HW07- RedOx, E-chem intro	
In the decomposition of cobalt (II) chloride, what substance is being oxidized? $CoCl_2(s) \rightarrow Co(s) + Cl_2(g)$ O Co O $CoCl_2$ O Cl	
Balance the skeletal equation of hydrazine with chlorate ions, shown below: N ₂ H ₄ (g) + ClO ₃ ⁻ (aq) → NO(g) + Cl ⁻ (aq) The reaction takes place in basic solution. What is the smallest possible integer coefficient of ClO ₃ ⁻ in the balanced equation? O 1 O 2 O 6 O 4	r
3 1.5 points Identify the reducing agent in the reaction in question 2. O CIO ₃ O NO O CI	
O N_2H_4 1.5 points In the reaction between lead (II) sulfide and oxygen gas, what is the oxidizing agent? PbS (s) + $2O_2$ (g) \rightarrow SO_2 (g) + Pb O_2 (s) O O_2	
O S O Pb O PbS O O 1.5 points	
In the reaction of thiosulfate ion with chlorine gas in an acidic solution, what is the reducing agent? $ \text{Cl}_2(g) + \text{S}_2\text{O}_3^{2-}(\text{aq}) \longrightarrow \text{Cl}^-(\text{aq}) + \text{SO}_4^{2-}(\text{aq}) $ $ \text{O} \text{S}_2\text{O}_3^{2-} $ $ \text{O} \text{Cl} $ $ \text{O} \text{S}^{2+} $ $ \text{O} \text{Cl}_2 $,
Balance the reaction in question 5 using oxidation and reduction half-reactions. What is the smallest possible integer coefficient of $SO_4^{2^-}$ in the combined balanced equation? O 2 O 1 O 4 O 3	S.
Based on the following reaction, answer the next 2 questions: $2Fe^{2+}$ (aq) + H_2O_2 (aq) \rightarrow $2Fe^{3+}$ (aq) + $2OH^-$ (aq) Which species is the oxidizing agent? O H_2O_2 O Fe^{3+} O OH^- O H O Fe^{2+}	
0 0 8 1.5 points	
Using the same reaction as the previous problem, how many electrons were transferred as it is balanced? O 0 O 2 O 1 O 6 O 5 O 4 O 3	
Balance the following reaction in basic conditions: $PbO_{2} (aq) + NO_{2}^{-} (aq) \rightarrow Pb^{2+} (aq) + NO_{3}^{-} (aq)$ What is the coefficient of water? Is it a product or a reactant? O 4, product O 4, reactant O 2, reactant O 1, product O 2 product O 1, reactant	
Balance the following reaction in acidic conditions and answer the next three questions: FeO (aq) + V_2O_5 (aq) \rightarrow Fe $_2O_3$ (aq) + V_2O_4 (aq) How many total electrons are transferred in this reaction? O 2 O 5 O 6 O 3	
Using the same reaction as the previous problem, what was the oxidation state V in V_2O_5 ? O 5 O 2 O 10 O 6	e of
Using the same reaction from question 10, what is the reducing agent? \bigcirc FeO \bigcirc V ₂ O ₅ \bigcirc V \bigcirc Fe \bigcirc O	
Balance the following reaction in basic conditions and answer the following questions: $Ca^{2+} (aq) + C(s) + ClO_2 (g) \rightarrow CaCO_3(s) + ClO_2^- (aq)$ What is the oxidation state of C in CaCO_3(s)? $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Using the reaction from the previous problem, what is the coefficient on water is it a product or reactant? O 1, product O 1, reactant O 3, product O 6, product O 6, reactant O 3, reactant O 3, reactant	r?
 1.5 points Using the same reaction from question 13, what is the total number of electro transferred? 0 1 0 6 0 2 0 4 	ns
 1.5 points Silver is plated on copper by immersing a piece of copper into a solution containing silver (I) ions. In the plating reaction, copper O is reduced and is the reducing agent. O is oxidized and is the reducing agent. O is oxidized and is the oxidizing agent. O is reduced and is the oxidizing agent. 	
In an electrolytic cell, the negative terminal is the (cathode/anode) and is the si of the (oxidation/reduction) half-reaction. O anode, reduction O cathode, reduction O anode, oxidation O cathode, oxidation	ite
Consider the cell reaction represented by the skeletal equation: $ Mn(s) + Ti^{2+}(aq) \longrightarrow Mn^{2+}(aq) + Ti(s) $ What is the proper shorthand notation for this reaction? $ \bigcirc Mn^{2+}(aq) \mid Mn(s) \mid Ti(s) \mid Ti^{2+}(aq) $ $ \bigcirc Mn(s) \mid Mn^{2+}(aq) \mid Ti^{2+}(aq) \mid Ti(s) $ $ \bigcirc Ti(s) \mid Ti^{2+}(aq) \mid Mn^{2+}(aq) \mid Mn(s) $ $ \bigcirc Ti^{2+}(aq) \mid Ti(s) \mid Mn(s) \mid Mn^{2+}(aq) $	
In a working electrochemical cell (a galvanic cell or a battery), the cations in the salt bridge move toward the cathode. O It is impossible to tell unless we know if the cathode is "+" or "-". O True O False O It depends on the charge of the cation.	e
20 1.5 points Properties of the cation. 20 1.5 points Copper (cathode) (anode) (b) salt bridge	
$\begin{array}{ccc} 1MZn^{2+}(aq) & 1MCu^{2+}(aq) \\ \\ In this electrochemical cell, what is the reduction half reaction? \\ \\ \bigcirc & Zn(s) \longrightarrow \longrightarrow Zn^{2+}(aq) + 2e^- \\ \\ \bigcirc & Cu(s) \longrightarrow \longrightarrow Cu^{2+}(aq) + 2e^- \\ \\ \bigcirc & Zn^{2+}(aq) + 2e^- \longrightarrow Zn(s) \\ \\ \bigcirc & Cu^{2+}(aq) + 2e^- \longrightarrow Cu(s) \end{array}$	
 In a galvanic cell O oxidation and reduction take place at the same time, but at different electrodes O electrical energy is used to reverse spontaneous chemical reactions O oxidation takes place at the cathode O electrolytes are added to carry electrons between electrodes 	