1 0.7 Cons 2O ₃	05 - Kinetics 75 points sider the reaction: $(g) \longrightarrow 3O_2(g)$ rate = $k[O_3]^2[O_2]^{-1}$
Wha	at is the overall order of the reaction and the order with respect to [O ₃]? 3 and 2 2 and 2 1 and 2 -1 and 3
Whe 3NC is pr	en the reaction below: $O(g) \longrightarrow N_2O(g) + NO_2(g)$ coceeding under conditions such that 0.015 mol/L of N_2O is being formed each second, the of the overall reaction is and the rate of change for NO is 0.015 M/s; 0.045 M/s 0.015 M/s; -0.045 M/s 0.030 M/s; -0.005 M/s
Wha A + I if the	0.015 M/s; -0.005 M/s 75 points at is the rate law for the reaction below: $B + C \longrightarrow D$ e following data were collected? $[A]_0 [B]_0 [C]_0 \text{ Initial Rate}$
1 2 3 4 O	
A ch	rate = 3.36×10^{-3} [A] [B] ³ rate = 5.37×10^{-3} [A] [B] ³ rate = 1.49×10^{-3} [B] ³ [C] 75 points nemical reaction is expressed by the balanced chemical equation: $2B \longrightarrow C$
Exp 1 2 3 Find	sider the data below: [A] ₀ [B] ₀ initial rate (M/min) 0.15 0.15
OOOO50.7	rate = $k [B]^2$ rate = $k [A]^2 [B]$ rate = $k [A] [B]$ rate = $k [A] [B]^2$
Calc O O O	o.00110 0.000166 0.327 0.00736
If the	e initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at t initial rate is C formed? 0.101 M/min -0.00974 M/min 0.00974 M/min
We l 2NC at a reac is do	know that the rate expression for the reaction below: $O + O_2 \longrightarrow 2NO_2$ certain temperature is rate = $[NO]^2[O_2]$. We carry out two experiments involving this ction at the same temperature, but in the second experiment the initial concentration of NO publed while the initial concentration of O_2 is halved. The initial rate in the second eximent will be how many times that of the first?
Cons	1 2 8 75 points sider the data collected for a chemical reaction between compounds A and B that is first er in A and first order in B:
rxn 1 2 3	[A] ₀ [B] ₀ rate (M/s) 0.2 0.05 0.1 ? 0.05 0.4 0.4 ? 0.8 The information above for 3 experiments, determine the missing concentrations of A and inswers should be in the order [A] then [B]. 0.20 M; 0.80 M
0 0 0	0.40 M; 0.20 M 0.80 M; 0.10 M 0.80 M; 0.20 M 0.40 M; 0.10 M
	a reaction that is zero-order overall the rate constant is zero. the reactant concentration does not change with time. the activation energy is zero. the rate does not change during the reaction.
Con:	sider the reaction below: B → C is 1st order in A and 0th order in B, a plot of ln[A] vs time will have a slope that is slowly increasing. decreasing exponentially. increasing exponentially.
At a A(g) is fo The	constant. 75 points certain fixed temperature, the reaction below: $+ 2B(g) \longrightarrow AB_2(g)$ and to be first order in the concentration of A and zeroth order in the concentration of B. reaction rate constant is $0.05\bar{s}^1$. If 2.00 moles of A and 4.00 moles of B are placed in a 1.00
	container, how many seconds will elapse before the concentration of A has fallen to 0.30 es/liter? There is not enough information to answer. 37.94 sec 2.83 sec 10.22 sec
The A	reaction below: → products pserved to obey first-order kinetics. Which of the following plots should give a straight line? [A] vs t ⁻¹ In[A] vs k In[A] vs k ⁻¹
0 0 0	[A] vs k [A] vs t In[A] vs t ⁻¹ In[A] vs t
A re	action is found to be first order with respect to one of the reactant species, A. When might of In[A] vs time NOT yield a straight line? if the reaction has any significant backward rate All of the other answers could be correct. when the rate also depends on the concentration of another reactant as well if the reaction comes to equilibrium
The	reaction rate constant is determined to be 0.012 M ⁻¹ s ⁻¹ . If after 27 minutes the amount of ft is 0.048 M. What was the initial concentration of A? 19.49 0.049 2.53e16
For to cyclo at 80	0.72 75 points the reaction below: obutane(g) \longrightarrow 2ethylene(g) 00K, a plot of ln[cyclobutane] vs t gives a straight line with a slope of -1.6 s ⁻¹ . Calculate the eneeded for the concentration of cyclobutane to fall to 1/16 of its initial value.
0 0 0	1.7 sec 0.63 sec 1.6 sec 1.3 sec
The	initial concentration of the reactant A in a first-order reaction is 1.2 M. After 69.3 sec, the centration has fallen to 0.3 M. What is the rate constant k? $0.01~\text{s}^{-1}$ not enough information $0.2~\text{s}^{-1}$ $0.02~\text{s}^{-1}$
Con: H ₂ C If it I	sider the reaction below: $CO_3(aq) \longrightarrow CO_2(aq) + H_2O(l)$ has a half-life of 1.6 sec, how long will it take a system with $[H_2CO_3]_0$ of 2M to reach CO_3 of 125mM? 2.9 sec Not enough information is given. 6.4 sec 3.2 sec
Cons a) No b) CS c) O	sider the following elementary reactions: $O + O_3 \longrightarrow NO_2 + O_2$ $S_2 \longrightarrow CS + S$ $+ O_2 + N_2 \longrightarrow O_3 + N_2$ It is impossible to know without knowing the overall reaction for each
A an	all three elementary reactions are bimolecular tetramolecular, termolecular, pentamolecular bimolecular, unimolecular, termolecular 75 points and B react to form C according to the single step reaction below: 28 → C
	ch of the following is the correct rate equation for [B] and the correct units for the rate stant of this reaction? $\frac{\Delta[B]}{\Delta t} = -k \left[A\right] \left[B\right]^2; \frac{1}{M^2}$ $\frac{\Delta[B]}{\Delta t} = -2k \left[A\right] \left[B\right]; \frac{1}{M \cdot s}$ $\frac{\Delta[B]}{\Delta t} = -2k \left[A\right] \left[B\right]^2; \frac{1}{M^2 \cdot s}$
Con: NO ₂ F + N	$\frac{\Delta[B]}{\Delta t} = -\frac{2k[A][B]}{[C]}; \frac{1}{M \cdot s}$ 75 points sider the mechanism below: $\frac{1}{2} + F_2 \longrightarrow NO_2F + F \qquad k_1, \text{ slow}$ $\frac{1}{NO_2} \longrightarrow NO_2F \qquad k_2, \text{ fast}$ at is the rate law?
O O O O	rate = $k_1[NO_2][F_2]$ rate = $k_2[NO_2][F]$ rate = $k_1k_2[NO_2]^2$ rate = $k_1[NO_2F][F_2]$ rate = $k_2[NO_2]^2$
Dete mec Step Step and	ermine the overall balanced equation for a reaction having the following proposed hanism: 1: $B_2 + B_2 \longrightarrow E_3 + D$ slow 2: $E_3 + A \longrightarrow C_2$ fast write an acceptable rate law.
0	$A + B_2 \longrightarrow C_2 + D$; rate = $k[A][B_2]$ $E_3 + A \longrightarrow B_2 + C_2$; rate = $k[E_3][A]$ $A + 2B_2 \longrightarrow C_2 + D$; rate = $k[B_2]^2$ $2B_2 \longrightarrow E_3 + D$; rate = $k[B_2]^2$
Cons $H_2(g)$ The g $I_2 \rightleftharpoons$ 2I + g	sider the reaction below: g) + I ₂ (g) → 2HI(g) proposed mechanism of this reaction is:
0 0 0	$egin{aligned} rate &= rac{k_1 k_2}{k_{-1}} [I_2] [H_2] \ rate &= rac{k_1 k_2}{k_{-1}} [I]^2 [H_2] \ rate &= k_1 k_2 [I_2] [H_2] \ rate &= k_2 [I]^2 [H_2] \end{aligned}$
A rea	action rate increases by a factor of 655 in the presence of a catalyst at 37°C. The activation rgy of the original pathway is 106 kJ/mol. What is the activation energy of the new pathway ther factors being equal? 16,600 kJ/mol 89.3 kJ/mol
A giv	89.3 J/mol 16,600 J/mol point ven reaction has an activation energy of 24.52 kJ/mol. At 25°C, the half-life is 4 minutes. At t temperature will the half-life be reduced to 20 seconds? 100°C
O O O	100°C 125°C 150°C 115°C
HO() a plo	the reaction below: (g) + H ₂ (g) \longrightarrow H ₂ O(g) + H(g) ot of lnk vs 1/T gives a straight line with a slope equal to -5.1x10 ³ K at is the activation energy for this reaction? 42 kJ/mol 98 kJ/mol 5.1 kJ/mol
A ce	12 kJ/mol point ertain reaction has an activation energy of 0.8314 kJ/mol and a rate constant of 2.718 \dot{s}^1 at PC. At -173°C, which expression for the rate constant is correct? $\ln(k_2) = -0.5$ $\ln(k_2) = 1.5$
A fo	$ln(k_2) = 1$ $ln(k_2) = 0.5$ Point and substance kept at 0°C becomes rotten (as determined by a good quantitative test) in 8.3 as. The same food rots in 10.6 hours at 30°C. Assuming the kinetics of the microorganisms
enzy deco	ymatic action is responsible for the rate of decay, what is the activation energy for the emposition process? Hint: Rate varies INVERSELY with time; a faster rate produces a shorte emposition time. 0.45 kJ/mol 67.2 kJ/mol 2.34 kJ/mol
	changes the reaction mechanism to ensure that K is increased. increases K to favor product formation. speeds up the reaction but does not change K.
A ca	speeds up the reaction and in the second in
O O O All e	speeds up the reaction and increases K to favor product formation. point else being equal, a reaction with a higher activation energy compared to one with a lower vation energy will be more endothermic. proceed slower.
29 1 p All e activ	else being equal, a reaction with a higher activation energy compared to one with a lower vation energy will be more endothermic. proceed slower. be more exothermic. proceed faster.
29 1 p All e activ	be being equal, a reaction with a higher activation energy compared to one with a lower vation energy will be more endothermic. proceed slower. be more exothermic. proceed faster.
29 1 p All e activ O O O O (7) Score	be being equal, a reaction with a higher activation energy compared to one with a lower varion energy will be more endothermic. proceed slower. be more exothermic. proceed faster.
29 1 p All e activ O O O O 30 1 p Cons 31 1 p Cons	A avg. energy of products Reaction coordinate at is the change in enthalpy (ΔH) for the reaction A \rightarrow B? 350 kJ -100 kJ 100 kJ -350 kJ
29 1 p All e activ O O O O 30 1 p Cons reac O O O O O 31 1 p	A avg. energy of products Reaction coordinate at is the change in enthalpy (ΔH) for the reaction $\Delta \to B$? 350 kJ -100 kJ -350 kJ -100 kJ -350 kJ -200 kJ -350 kJ
29 1 p All e activ O O O O 30 1 p Cons reac O O O O 31 1 p	dist despends a reaction with a higher activation energy compared to one with a lower varion energy will be more endothermic. proceed slower. be more exothermic. proceed faster. Too 450 A avg. energy of products Reaction coordinate at is the change in enthalpy (ΔH) for the reaction $\Lambda \longrightarrow B$? 350 kJ -100 kJ 100 kJ 200 kJ 250 kJ 270 kJ
29 1 P All e active O O O O O O O O O O O O O O O O O O O	is be being equal, a reaction with a higher activation energy compared to one with a lower vaction energy will be more enothermic. proceed slower. be more exothermic. proceed faster.
29 1 P All e activo O O O O O O O O O O O O O O O O O O O	Is be being equal, a reaction with a higher activation energy compared to one with a lower action energy will be more endothermic. proceed slower. be more exothermic. proceed faster. 200 450 450 450 450 450 450 450
29 1 p All e activo O O O O O O O O O O O O O O O O O O O	the being equal, a reaction with a higher activation energy compared to one with a lower axidion energy will be more endothermic. proceed slower. be more exothermic. proceed faster.