1

Consider the reaction:
$2 \mathrm{O}_{3}(\mathrm{~g}) \longrightarrow 3 \mathrm{O}_{2}(\mathrm{~g}) \quad$ rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}$
What is the overall order of the reaction and the order with respect to $\left[\mathrm{O}_{3}\right]$?
○ 3 and 2
O 2 and 2
○ 1 and 2

- -1 and 3

2
When the reaction below:
$3 \mathrm{NO}(\mathrm{g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$
is proceeding under conditions such that $0.015 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{N}_{2} \mathrm{O}$ is being formed each second, the rate of the overall reaction is \qquad and the rate of change for NO is \qquad -_.
$0.015 \mathrm{M} / \mathrm{s} ; 0.045 \mathrm{M} / \mathrm{s}$
$0.015 \mathrm{M} / \mathrm{s} ;-0.045 \mathrm{M} / \mathrm{s}$
$0.030 \mathrm{M} / \mathrm{s} ;-0.005 \mathrm{M} / \mathrm{s}$
$0.015 \mathrm{M} / \mathrm{s} ;-0.005 \mathrm{M} / \mathrm{s}$
6
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5 , at what initial rate is C formed?
$00.101 \mathrm{M} / \mathrm{min}$
○ $-0.00974 \mathrm{M} / \mathrm{min}$
○ $0.0314 \mathrm{M} / \mathrm{min}$
$0.00974 \mathrm{M} / \mathrm{min}$

7
We know that the rate expression for the reaction below: $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$
at a certain temperature is rate $=[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$. We carry out two experiments involving this reaction at the same temperature, but in the second experiment the initial concentration of NO is doubled while the initial concentration of O_{2} is halved. The initial rate in the second experiment will be how many times that of the first?
○ 4
$\bigcirc 1$
$\bigcirc 2$
○ 8
3
What is the rate law for the reaction below:
$A+B+C \longrightarrow D$
if the following data were collected?

1	0.4	1.2	0.7	2.32×10^{-3}
	2	1.3	1.2	0.9

2	1.3	1.2	0.9	7.54×10^{-3}
	3	0.4	4.1	0.8

3	0.4	4.1	0.8	9.25×10^{-2}
4	1.3	1.2	0.2	7.54×10^{-3}

O rate $=4.48 \times 10^{-3}[A][B]^{2}[C]$
O rate $=1.79 \times 10^{-3}[B]^{2}[C]$

- rate $=3.36 \times 10^{-3}[A][B]^{3}$
\bigcirc rate $=5.37 \times 10^{-3}[A][B]^{3}$
O rate $=1.49 \times 10^{-3}[B]^{3}[C]$

4
A chemical reaction is expressed by the balanced chemical equation:
$A+2 B \longrightarrow C$
Consider the data below:

\exp	$[A]_{0}$	$[B]_{0}$	initial rate $(\mathrm{M} / \mathrm{min})$
1	0.15	0.15	0.00110363
2	0.15	0.3	0.0044145
3	0.3	0.3	0.008829

Find the rate law for the reaction.
○ rate $=k[B]^{2}$
O rate $=k[A]^{2}[B]$
○ rate $=k[A][B]$

- rate $=k[A][B]^{2}$

5

Calculate the value of the rate constant (k) for the reaction in question 4.
○ 0.00110
0.000166

○ 0.327
○ 0.00736

8
Consider the data collected for a chemical reaction between compounds A and B that is first order in A and first order in B :

| rxn | $[\mathrm{A}]_{0}$ | $[\mathrm{~B}]_{0}$ | rate $(\mathrm{M} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.2 | 0.05 | 0.1 |
| 2 | $?$ | 0.05 | 0.4 |
| 3 | 0.4 | $?$ | 0.8 |

From the information above for 3 experiments, determine the missing concentrations of A and B. Answers should be in the order $[A]$ then $[B]$.
$0.20 \mathrm{M} ; 0.80 \mathrm{M}$
$0.40 \mathrm{M} ; 0.20 \mathrm{M}$
$0.80 \mathrm{M} ; 0.10 \mathrm{M}$
$0.80 \mathrm{M} ; 0.20 \mathrm{M}$
○ $0.40 \mathrm{M} ; 0.10 \mathrm{M}$

9
For a reaction that is zero-order overall...
\bigcirc the rate constant is zero.
O the reactant concentration does not change with time.
O the activation energy is zero.
O the rate does not change during the reaction.

10
Consider the reaction below:
$A+B \longrightarrow C$
If it is 1st order in A and 0 th order in B , a plot of $\ln [\mathrm{A}]$ vs time will have a slope that is...
O slowly increasing.
\bigcirc decreasing exponentially.
O increasing exponentially.
\bigcirc constant.

The initial concentration of the reactant A in a first－order reaction is 1.2 M ．After 69.3 sec ，the concentration has fallen to 0.3 M ．What is the rate constant k ？
$0.01 \mathrm{~s}^{-1}$
O not enough information
$0.2 \mathrm{~s}^{-1}$
$0.02 \mathrm{~s}^{-1}$

17
Consider the reaction below：
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
If it has a half－life of 1.6 sec ，how long will it take a system with $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]_{0}$ of 2 M to reach
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ of 125 mM ？
○ 2.9 sec
Not enough information is given．
O 6.4 sec
O 3.2 sec

18
Consider the following elementary reactions：
a） $\mathrm{NO}+\mathrm{O}_{3} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
b） $\mathrm{CS}_{2} \longrightarrow \mathrm{CS}+\mathrm{S}$
c） $\mathrm{O}+\mathrm{O}_{2}+\mathrm{N}_{2} \longrightarrow \mathrm{O}_{3}+\mathrm{N}_{2}$
Identify the molecularity of each reaction respectively．
〇 it is impossible to know without knowing the overall reaction for each
O all three elementary reactions are bimolecular
〇 tetramolecular，termolecular，pentamolecular
〇 bimolecular，unimolecular，termolecular

19

A and B react to form C according to the single step reaction below：
$A+2 B \longrightarrow C$
Which of the following is the correct rate equation for $[\mathrm{B}]$ and the correct units for the rate constant of this reaction？
○ $\frac{\Delta[B]}{\Delta t}=-k[A][B]^{2} ; \quad \frac{1}{M^{2}}$
○ $\frac{\Delta[B]}{\Delta t}=-2 k[A][B] ; \quad \frac{1}{M \cdot s}$
$\bigcirc \frac{\Delta[B]}{\Delta t}=-2 k[A][B]^{2} ; \quad \frac{1}{M^{2} \cdot s}$
〇 $\frac{\Delta[B]}{\Delta t}=-\frac{2 k[A][B]}{[C]} ; \quad \frac{1}{M \cdot s}$

20
Consider the mechanism below：
$\mathrm{NO}_{2}+\mathrm{F}_{2} \longrightarrow \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F} \quad \mathrm{k}_{1}$ ，slow
$\mathrm{F}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}_{2} \mathrm{~F} \quad \mathrm{k}_{2}$ ，fast
What is the rate law？
〇 rate $=\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]$
○ rate $=k_{2}\left[\mathrm{NO}_{2}\right][\mathrm{F}]$
○ rate $=k_{1} k_{2}\left[\mathrm{NO}_{2}\right]^{2}$
○ rate $=k_{1}\left[\mathrm{NO}_{2} \mathrm{~F}\right]\left[\mathrm{F}_{2}\right]$
○ rate $=k_{2}\left[\mathrm{NO}_{2}\right]^{2}$

21
Determine the overall balanced equation for a reaction having the following proposed mechanism：
Step 1：$B_{2}+B_{2} \longrightarrow E_{3}+D \quad$ slow
Step 2：$E_{3}+A \longrightarrow C_{2}$ fast
and write an acceptable rate law．
$\bigcirc \mathrm{A}+\mathrm{B}_{2} \longrightarrow \mathrm{C}_{2}+\mathrm{D}$ ；rate $=\mathrm{k}[\mathrm{A}]\left[\mathrm{B}_{2}\right]$
$\bigcirc E_{3}+A \longrightarrow B_{2}+C_{2}$ ；rate $=k\left[E_{3}\right][A]$
○ $A+2 B_{2} \longrightarrow C_{2}+D$ ；rate $=k\left[B_{2}\right]^{2}$
○ $2 \mathrm{~B}_{2} \longrightarrow \mathrm{E}_{3}+\mathrm{D} ;$ rate $=\mathrm{k}\left[\mathrm{B}_{2}\right]^{2}$

22
Consider the reaction below：
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$
The proposed mechanism of this reaction is：
$\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{l} \quad \mathrm{k}_{1}, \mathrm{k}_{-1}$（reverse rxn），fast
$2 \mathrm{I}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{HI} \quad \mathrm{k}_{2}$ ，slow
What is the rate of the overall reaction？
\bigcirc rate $=\frac{k_{-1} k_{2}}{k_{1}}\left[I_{2}\right]\left[H_{2}\right]$
\bigcirc rate $=\frac{k_{1} k_{2}}{k_{-1}}\left[I_{2}\right]\left[H_{2}\right]$
\bigcirc rate $=\frac{k_{1} k_{2}}{k_{-1}}[I]^{2}\left[H_{2}\right]$
〇 rate $=k_{1} k_{2}\left[I_{2}\right]\left[H_{2}\right]$
\bigcirc rate $=k_{2}[I]^{2}\left[H_{2}\right]$

23
A reaction rate increases by a factor of 655 in the presence of a catalyst at $37^{\circ} \mathrm{C}$ ．The activation energy of the original pathway is $106 \mathrm{~kJ} / \mathrm{mol}$ ．What is the activation energy of the new pathway， all other factors being equal？
O $16,600 \mathrm{~kJ} / \mathrm{mol}$
○ $89.3 \mathrm{~kJ} / \mathrm{mol}$
O $89.3 \mathrm{~J} / \mathrm{mol}$
O $16,600 \mathrm{~J} / \mathrm{mol}$

24
A given reaction has an activation energy of $24.52 \mathrm{~kJ} / \mathrm{mol}$ ．At $25^{\circ} \mathrm{C}$ ，the half－life is 4 minutes．At what temperature will the half－life be reduced to 20 seconds？

○ $100^{\circ} \mathrm{C}$
－ $125^{\circ} \mathrm{C}$
－ $150^{\circ} \mathrm{C}$
－ $115^{\circ} \mathrm{C}$

25
For the reaction below：
$\mathrm{HO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}(\mathrm{g})$
a plot of Ink vs $1 / T$ gives a straight line with a slope equal to $-5.1 \times 10^{3} \mathrm{~K}$
What is the activation energy for this reaction？
○ $42 \mathrm{~kJ} / \mathrm{mol}$
○ $98 \mathrm{~kJ} / \mathrm{mol}$
○ $5.1 \mathrm{~kJ} / \mathrm{mol}$
○ $12 \mathrm{~kJ} / \mathrm{mol}$

26
A certain reaction has an activation energy of $0.8314 \mathrm{~kJ} / \mathrm{mol}$ and a rate constant of $2.718 \mathrm{~s}^{-1}$ at $-73^{\circ} \mathrm{C}$ ．At $-173^{\circ} \mathrm{C}$ ，which expression for the rate constant is correct？

○ $\ln \left(k_{2}\right)=-0.5$
（ $\ln \left(k_{2}\right)=1.5$
（ $\ln \left(\mathrm{k}_{2}\right)=1$
（ $\ln \left(k_{2}\right)=0.5$

27
A food substance kept at $0^{\circ} \mathrm{C}$ becomes rotten（as determined by a good quantitative test）in 8.3 days．The same food rots in 10.6 hours at $30^{\circ} \mathrm{C}$ ．Assuming the kinetics of the microorganisms enzymatic action is responsible for the rate of decay，what is the activation energy for the decomposition process？Hint：Rate varies INVERSELY with time；a faster rate produces a shorter decomposition time．
○ $0.45 \mathrm{~kJ} / \mathrm{mol}$
○ $67.2 \mathrm{~kJ} / \mathrm{mol}$
○ $2.34 \mathrm{~kJ} / \mathrm{mol}$
○ $23.4 \mathrm{~kJ} / \mathrm{mol}$

28
A catalyst．．．
○ changes the reaction mechanism to ensure that K is increased．
\bigcirc increases K to favor product formation．
○ speeds up the reaction but does not change K．
〇 speeds up the reaction and increases K to favor product formation．

29
All else being equal，a reaction with a higher activation energy compared to one with a lower activation energy will．．．
\bigcirc be more endothermic．
\bigcirc proceed slower．
\bigcirc be more exothermic．
O proceed faster．

30

Consider the potential energy diagram below：

What is the change in enthalpy (ΔH) for the reaction $\mathrm{A} \longrightarrow \mathrm{B}$ ？
○ 350 kJ
○ -100 kJ
〇 100 kJ
○ -350 kJ

31
Consider the potential energy diagram in question 13 ．What is the activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ for the reaction？
〇 100 kJ
〇 200 kJ
〇 250 kJ
○ 350 kJ

32
Which of the following statements is TRUE？
O If the exponents in the rate－law do not match the coefficients in the balanced equation， then we know that the reaction does not take place in one step．

O The rate－law for a reaction can be predicted from the balanced chemical equation．
The exponents in the rate－law must match the coefficients in the balanced chemical equation for the reaction．
O If the exponents in the rate－law do not match the coefficients in the balanced chemical equation，then we know that the reaction takes place in one step．

33
＂Reaction mechanisms usually involve only unimolecular or bimolecular steps．＂ Is this statement true or false？
〇 True，because steps of higher molecularity would not be compatible with observed reaction rate laws．

〇 False．
True，because collisions of higher molecularity would occur too infrequently to account for an observed rate．
O True，because the activation energy for collisions of higher molecularity would be too great．

34
Which of the following is／are ALWAYS true concerning collision and transition state theory？ I）Transition states are short－lived．
II）A balanced reaction shows which species must collide for the reaction to occur．
III）Intermediates are short－lived．
\bigcirc I only
O All are true．
〇 II only
O II and III
O I and III
O III only

35
Consider the following reaction mechanism：
1） $\mathrm{Cl}_{2}+\mathrm{Pt} \longrightarrow 2 \mathrm{Cl}+\mathrm{Pt}$
2） $\mathrm{Cl}+\mathrm{CO}+\mathrm{Pt} \longrightarrow \mathrm{ClCO}+\mathrm{Pt}$
3） $\mathrm{Cl}+\mathrm{ClCO} \longrightarrow \mathrm{Cl}_{2} \mathrm{CO}$
Overall： $\mathrm{Cl}_{2}+\mathrm{CO} \longrightarrow \mathrm{Cl}_{2} \mathrm{CO}$
Which species is／are intermediates？
$\bigcirc \mathrm{Cl}, \mathrm{ClCO}$
$\bigcirc \mathrm{Pt}, \mathrm{C}$
○ ClCO
$\bigcirc \mathrm{Pt}$
$\bigcirc \mathrm{Pt}, \mathrm{Cl}, \mathrm{ClCO}$

