1 0.75 points

1 0.75 points	6 0.75 points
Consider the reaction:	If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at
$2O_3(g) \longrightarrow 3O_2(g)$ rate = $k[O_3]^2[O_2]^{-1}$	what initial rate is C formed?
What is the overall order of the reaction and the order with respect to $[O_3]$?	O 0.101 M/min
O 3 and 2	O -0.00974 M/min
O 2 and 2	O 0.0314 M/min
1 and 2	O 0.00974 M/min
O -1 and 3	
	7 0.75 points
2 0.75 points	We know that the rate expression for the reaction below:
When the reaction below:	$2NO + O_2 \rightarrow 2NO_2$
$3NO(g) \longrightarrow N_2O(g) + NO_2(g)$	at a certain temperature is rate = [NO] ² [O ₂]. We carry out two experiments involving this reaction at the same temperature, but in the second experiment the initial concentration of NO
is proceeding under conditions such that 0.015 mol/L of N ₂ O is being formed each second, the rate of the overall reaction is and the rate of change for NO is	is doubled while the initial concentration of O_2 is halved. The initial rate in the second
	experiment will be how many times that of the first?
O 0.015 M/s; 0.045 M/s	O 4
O 0.015 M/s; -0.045 M/s	O 1
O 0.030 M/s; -0.005 M/s	O 2
O 0.015 M/s; -0.005 M/s	
	O 8
3 0.75 points	8 0.75 points
What is the rate law for the reaction below: $A + B + C \longrightarrow D$	Consider the data collected for a chemical reaction between compounds A and B that is first
if the following data were collected?	order in A and first order in B:
Exp [A] ₀ [B] ₀ [C] ₀ Initial Rate	rxn [A] ₀ [B] ₀ rate (M/s)
1 0.4 1.2 0.7 2.32x10 ⁻³	1 0.2 0.05 0.1
2 1.3 1.2 0.9 7.54x10 ⁻³	2 ? 0.05 0.4
3 0.4 4.1 0.8 9.25×10 ⁻²	3 0.4 ? 0.8
4 1.3 1.2 0.2 7.54x10 ⁻³	
	From the information above for 3 experiments, determine the missing concentrations of A and B. Answers should be in the order [A] then [B].
O rate = $4.48 \times 10^{-3} [A] [B]^2 [C]$	O 0.20 M; 0.80 M
O rate = $1.79 \times 10^{-3} [B]^2 [C]$	O 0.40 M; 0.20 M
O rate = $3.36 \times 10^3 [A] [B]^3$	
O rate = 5.37x10 ⁻³ [A] [B] ³	O 0.80 M; 0.10 M
-	O 0.80 M; 0.20 M
O rate = 1.49x10 ⁻³ [B] ³ [C]	O 0.40 M; 0.10 M
4 0.75 points	9 0.75 points
A chemical reaction is expressed by the balanced chemical equation:	For a reaction that is zero-order overall
$A + 2B \longrightarrow C$	O the rate constant is zero.
Consider the data below:	
exp [A] ₀ [B] ₀ initial rate (M/min)	O the reactant concentration does not change with time.
	O the activation energy is zero.
2 0.15 0.3 0.0044145 3 0.3 0.008829	O the rate does not change during the reaction.
3 0.3 0.000027	
Find the rate law for the reaction.	10 0.75 points
O rate = k $[B]^2$	Consider the reaction below:
\bigcirc rate = k [A] ² [B]	$A + B \longrightarrow C$
	If it is 1st order in A and 0th order in B, a plot of In[A] vs time will have a slope that is
O rate = k [A] [B]	O slowly increasing.
O rate = k [A] $[B]^2$	O decreasing exponentially.
	O increasing exponentially.

O constant.

5 0.75 points

Calculate the value of the rate constant (k) for the reaction in question 4.

- O 0.00110
- O 0.000166
- O 0.327
- O 0.00736

6 0.75 point

1 0.75 points

At a certain fixed temperature, the reaction below: $A(g) + 2B(g) \longrightarrow AB_2(g)$

is found to be first order in the concentration of A and zeroth order in the concentration of B.

The reaction rate constant is $0.05s^{1}$. If 2.00 moles of A and 4.00 moles of B are placed in a 1.00 liter container, how many seconds will elapse before the concentration of A has fallen to 0.30 moles/liter?

- O There is not enough information to answer.
- O 37.94 sec
- O 2.83 sec
- 10.22 sec

12 0.75 poir

The reaction below:

 $A \longrightarrow \text{products}$

is observed to obey first-order kinetics. Which of the following plots should give a straight line?

- O [A] vs t⁻¹
- O In[A] vs k
- O In[A] vs k⁻¹
- O [A] vs k
- O [A] vs t
- O In[A] vs t⁻¹
- -
- O In[A] vs t

0.75 points

A reaction is found to be first order with respect to one of the reactant species, A. When might a plot of In[A] vs time NOT yield a straight line?

- O if the reaction has any significant backward rate
- O All of the other answers could be correct.
- O when the rate also depends on the concentration of another reactant as well
- O if the reaction comes to equilibrium

14 0.75 points

The reaction rate constant is determined to be 0.012 M⁻¹s⁻¹. If after 27 minutes the amount of A left is 0.048 M. What was the initial concentration of A?

- O 19.49
- 0.049
- O 2.53e16
- 0.72

15 0.75 point

For the reaction below:

 $cyclobutane(g) \longrightarrow 2ethylene(g)$

at 800K, a plot of $\ln[cyclobutane]$ vs t gives a straight line with a slope of -1.6 s⁻¹. Calculate the time needed for the concentration of cyclobutane to fall to 1/16 of its initial value.

- O 1.7 sec
- O 0.63 sec
- O 1.6 sec
- O 1.3 sec

6 0.75 point

The initial concentration of the reactant A in a first-order reaction is 1.2 M. After 69.3 sec, the concentration has fallen to 0.3 M. What is the rate constant k?

- O 0.01 s⁻¹
- O not enough information
- O 0.2 s⁻¹
- O 0.02 s⁻¹

7 0.75 point

Consider the reaction below: H₂CO₃(aq) \rightarrow CO₂(aq) + H₂O()) If it has a half-life of 1.6 sec, how long will it take a system with [H₂CO₃]₀ of 2M to reach

O 2.9 sec

[H₂CO₃] of 125mM?

- O Not enough information is given.
- 6.4 sec
- O 3.2 sec

8 0.75 poin

Consider the following elementary reactions: a) NO + O₃ \rightarrow NO₂ + O₂ b) CS₂ \rightarrow CS + S c) O + O₂ + N₂ \rightarrow O₃ + N₂ Identify the molecularity of each reaction respectively. O it is impossible to know without knowing the overall reaction for each all three elementary reactions are bimolecular tetramolecular, termolecular, pentamolecular

O bimolecular, unimolecular, termolecular

19 0.75 point

A and B react to form C according to the single step reaction below: A + 2B \longrightarrow C

Which of the following is the correct rate equation for [B] and the correct units for the rate constant of this reaction?

$$\bigcirc \quad \frac{\Delta[B]}{\Delta t} = -2k [A] [B]^2; \quad \frac{1}{M^2 \cdot s}$$

$$\bigcirc \quad \frac{\Delta[B]}{\Delta t} = -\frac{2k[A][B]}{[C]}; \quad \frac{1}{M \cdot s}$$

20 0.75 poi

Consider the mechanism below: $NO_2 + F_2 \rightarrow NO_2F + F$ k_1 , slow $F + NO_2 \rightarrow NO_2F$ k_2 , fast What is the rate law? O rate = $k_1[NO_2][F_2]$ O rate = $k_2[NO_2][F]$

- $O \quad rate = k_1 k_2 [NO_2]^2$
- O rate = $k_1 k_2 [NO_2]^2$
- O rate = $k_1 [NO_2F][F_2]$
- O rate = $k_2[NO_2]^2$

21 1 point Determine the overall balanced equation for a reaction having the following proposed	26 1 point
Determine the overall balanced equation for a reaction having the following proposed mechanism:	A certain reaction has an activation energy of 0.8314 kJ/mol and a rate constant of 2.718 s ¹ at -73°C. At -173°C, which expression for the rate constant is correct?
Step 1: $B_2 + B_2 \longrightarrow E_3 + D$ slow	$O = \ln(k_2) = -0.5$
Step 2: $E_3 + A \longrightarrow C_2$ fast	
and write an acceptable rate law.	$O \ln(k_2) = 1.5$
$O A + B_2 \longrightarrow C_2 + D; rate = k[A][B_2]$	$O \ln(k_2) = 1$
$\bigcirc E_3 + A \longrightarrow B_2 + C_2; \text{ rate } = k[E_3][A]$	\bigcap ln(k ₂) = 0.5
$O A + 2B_2 \longrightarrow C_2 + D; \text{ rate } = k[B_2]^2$	
$O 2B_2 \longrightarrow E_3 + D; rate = k[B_2]^2$	27 1 point
	A food substance kept at 0°C becomes rotten (as determined by a good quantitative test) in 8.3
	days. The same food rots in 10.6 hours at 30°C. Assuming the kinetics of the microorganisms enzymatic action is responsible for the rate of decay, what is the activation energy for the
22 1 point	decomposition process? Hint: Rate varies INVERSELY with time; a faster rate produces a shorter
Consider the reaction below: $H_2(g) + I_2(g) \longrightarrow 2HI(g)$	decomposition time.
The proposed mechanism of this reaction is:	O 0.45 kJ/mol
$I_2 \rightleftharpoons 2I$ k_1, k_1 (reverse rxn), fast	O 67.2 kJ/mol
$2I + H_2 \longrightarrow 2HI$ k ₂ , slow	O 2.34 kJ/mol
What is the rate of the overall reaction?	
$\bigcirc rate = \frac{k_{-1}k_2}{k_1}[I_2][H_2]$	O 23.4 kJ/mol
-	
$\bigcirc rate = \frac{k_1 k_2}{k_1} [I_2] [H_2]$	28 1 point
	A catalyst
$\bigcirc rate \ = \ \frac{k_1 k_2}{k_{-1}} [I]^2 \ [H_2]$	C changes the reaction mechanism to ensure that K is increased.
$\bigcirc rate = k_1 k_2 \left[I_2 \right] \left[H_2 \right]$	O increases K to favor product formation.
$\bigcirc rate \ = \ k_2[I]^2 \ [H_2]$	O speeds up the reaction but does not change K.
	O speeds up the reaction and increases K to favor product formation.
energy of the original pathway is 106 kJ/mol. What is the activation energy of the new pathway, all other factors being equal? 16,600 kJ/mol 89.3 kJ/mol 89.3 J/mol	All else being equal, a reaction with a higher activation energy compared to one with a lower activation energy will
O 16,600 J/mol	O proceed faster.
24 1 point	30 1 point
A given reaction has an activation energy of 24.52 kJ/mol. At 25°C, the half-life is 4 minutes. At	Consider the potential energy diagram below:
what temperature will the half-life be reduced to 20 seconds?	A
O 100°C	700
O 125°C	
O 150°C	k k k k k k k k k k k k k k k k k k k
O 115°C	A A avg. energy
25 1 point	of reactants B
For the reaction below:	avg. energy
$HO(g) + H_2(g) \longrightarrow H_2O(g) + H(g)$	of products
a plot of lnk vs $1/T$ gives a straight line with a slope equal to -5.1x10 3 K	Reaction coordinate
What is the activation energy for this reaction?	What is the change in enthalpy (ΔH) for the reaction A \rightarrow B?
O 42 kJ/mol	
O 98 kJ/mol	O 350 kJ
O 5.1 kJ/mol	O -100 kJ
	O 100 kJ
O 12 kJ/mol	O 100 kJ O -350 kJ

31 1 poin

Consider the potential energy diagram in question 13. What is the activation energy (E_a) for the reaction?

- O 100 kJ
- O 200 kJ
- 🔿 250 kJ
- O 350 kJ

32 1 poi

- Which of the following statements is TRUE?
- O If the exponents in the rate-law do not match the coefficients in the balanced equation, then we know that the reaction does not take place in one step.
- O The rate-law for a reaction can be predicted from the balanced chemical equation.
- O The exponents in the rate-law must match the coefficients in the balanced chemical equation for the reaction.
- O If the exponents in the rate-law do not match the coefficients in the balanced chemical equation, then we know that the reaction takes place in one step.

33 1 poir

- "Reaction mechanisms usually involve only unimolecular or bimolecular steps." Is this statement true or false?
- O True, because steps of higher molecularity would not be compatible with observed reaction rate laws.

O False.

- O True, because collisions of higher molecularity would occur too infrequently to account for an observed rate.
- O True, because the activation energy for collisions of higher molecularity would be too great.

34 1 po

Which of the following is/are ALWAYS true concerning collision and transition state theory? I) Transition states are short-lived. II) A balanced reaction shows which species must collide for the reaction to occur.

III) Intermediates are short-lived.

- All are true.
- O II only
- O II and III
- O I and III
- O III only

35 1 poir

Consider the following reaction mechanism: 1) $Cl_2 + Pt \rightarrow 2Cl + Pt$ 2) $Cl + CO + Pt \rightarrow ClCO + Pt$ 3) $Cl + ClCO \rightarrow Cl_2CO$ Overall: $Cl_2 + CO \rightarrow Cl_2CO$ Which species is/are intermediates? O Cl, ClCO O Pt, Cl

- O cico
- O Pt
- O Pt, CI, CICO