HW02 - Osmosis & Chemical Equilibria

Question 1	1.5 pts
A semi-permeable membrane can withstand an osmotic pressure of 0.75 atm. W molarity of aqueous magnesium bromide solution would reach the limit for this membrane? (Assume RT = $25 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1}$)	/hat
○ 0.01 M	
○ 0.03 mM	
○ 0.03 M	
○ 0.01 mM	

Question 2

1.5 pts

Catalase (a liver enzyme) dissolves in water. A 14mL solution containing 0.166g of catalase exhibits an osmotic pressure of 1.2 Torr at 20°C. What is the molar mass of catalase?

○ 1.49x10⁵ g/mol

1.69x10⁵ g/mol

2.81x10⁵ g/mol

1.81x10⁵ g/mol

Question 3

1.5 pts

Two aqueous solutions are separated by a semi-permeable membrane:

Solution A = 0.34 M KCl

Solution B = 0.34 M MgCl₂

Which of the following statements is TRUE?

- There is no net flow of H₂O molecules from one solution to another.
- \bigcirc There is a net flow of H₂O molecules from solution B to solution A.

 \bigcirc There is a net flow of H₂O molecules from solution A to solution B.

There is a net flow of CI- ions from solution B to solution A.

Question 4

Red blood cells contain Na⁺ ions, K⁺ ions, and water. If we place some red blood cells into a beaker full of pure water, what will happen to them?

they will shrivel and collapse

nothing

they will wiggle around rapidly

they will swell and burst

Question 5

When the chemical reaction

 $A + B \rightleftharpoons C + D$

is at equilibrium, which of the following is true?

the sum of the concentrations of A and B equals the sum of the concentrations of C and D

- all four concentrations are equal
- both the forward and reverse reactions have stopped

neither the forward nor the reverse reactions have stopped

Question 6

Explain why equilibrium constants are dimensionless.

- Every concentration or pressure that enters into K_c or K_p is really divided by the corresponding concentration or pressure of the substance in its standard state.
- O They are not really dimensionless, but we must treat them as such in order to be able to take In(K) in the expression:
- $\Delta G^{\circ} = -RT \ln K$
- O This is a trick question. Equilibrium constants have units that involve some multiple of atmospheres or moles per liter.
- O They are dimensionless because the pressures or concentrations we put in are all for the substances in their standard states.

Question 7

The expression for K_{c} for the reaction $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ at equilibrium is:

1.2 pts

1.5 pts

- $\bigcirc \frac{[NH_3]^4[O_2]^5}{[NO]^4[H_2O]^6}$
- $\bigcirc \frac{[NO][H_2O]}{[NH_3][O_2]}$
- $\bigcirc [NH_3]^4 [O_2]^5$
- $\underbrace{[NO]^4 [H_2 O]^6}_{[NH_3]^4 [O_2]^5}$

Question 8

Consider the following reactions	at 25°C					
Consider the following reactions at 25°C.						
$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$	$K_{c} = 1 \times 10^{30}$					
$2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g)$	$K_{c} = 5 \times 10^{-82}$					
$2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g)$	$K_{c} = 3 \times 10^{91}$					
Which compound is most likely to dissociate and give $O_2(g)$ at 25°C?						
○ H ₂ O						
○ NO						
○ CO						

 \bigcirc CO₂

Question 9 1.2 pts

At 600°C, the equilibrium constant for the reaction
$2HgO(s) \longrightarrow 2Hg(I) + O_2(g)$
is 2.8. Calculate the equilibrium constant for the reaction
$0.5O_2(g) + Hg(I) \longrightarrow HgO(s).$
0 1.1

0.36

0.60

0 1.7

Question 10

Consider the reaction
2 HgO(s) \rightleftharpoons 2 Hg(l) + O ₂ (g)
What is the form of the equilibrium constant K_{c} for this reaction?
$\bigcirc \frac{[O_2]}{[H_g O]^2}$

 $\bigcirc \quad [Hg]^2[O_2]$ $[HgO]^2$

 $\bigcirc [O_2]$

 $\bigcirc [Hg]^2 [O_2]$

Question 11

 $K_c = 2.6 \times 10^8$ at 825 K for the reaction $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is the equilibrium concentration of H₂S? 1.0 M

10 M

0.0010 M

O.10 M

Question 12

Consider the reaction below

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

At 1000 K the equilibrium pressures of the three gases in one mixture were found to be 0.562 atm SO₂, 0.101 atm O₂, and 0.332 atm SO₃. Calculate the value of $K_{\rm p}$ for the reaction.

2.64

- 0.171
- 0.289
- 0 3.46

Question 13

Consider the following reaction: K_p = 2.40 @ 373 K $2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$ Calculate K_c for this reaction at 100°C.

1.2 pts

- 0.0784
- 7440
- 0 19.7
- 0 73.5

Question 14

1.2 pts

Calculate the equilibrium constant at 25°C for a reaction for which $\Delta G^{\circ} = -4.22$ kcal/mol.

- 0 1240.51
- 0 -1240.51
- 620.254
- 2481.02

Question 15

1.2 pts

The figure below represents a reaction at 298 K.

Based on the figure, which of the following statements (if any) are FALSE?

- None of the other statements are false.
- At point C, the system is at equilibrium.
- At point D, the reaction will move toward the reactants to get to equilibrium.
- \bigcirc For this reaction, ΔG° is negative.
- \bigcirc At point B, Q < K.

Question 16

1.2 pts

Consider the reaction:

 $C_{graphite}(s) + O_2(g) \rightleftharpoons CO_2(g)$ $\Delta G^\circ = -400 \text{ kJ}$

Which of the following is a possible value of *K* for this reaction?

0 -0.56			
○ 10 ⁻⁷⁰			
0.56			
○ 10 ⁷⁰			

Question 17

1.2 pts

The reaction $A + B \rightleftharpoons C + 2D$ has an equilibrium constant of 3.7×10^{-3} . Consider a reaction mixture with: [A] = 2.0 x 10⁻² M [B] = 1.7 x 10⁻⁴ M [C] = 2.4 x 10⁻⁶ M [D] = 3.5 x 10⁻³ M Which of the following statements is definitely true? O The forward reaction will occur to a greater extent than the reverse reaction until equilibrium is established.

The reverse reaction will occur to a greater extent than the forward reaction until equilibrium is established.

O No conclusions about the system can be made without additional information.

O The system is at equilibrium.

Question 18

1.2 pts

The reaction

Κ.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

has an equilibrium constant of 4.0 x 10⁸ at 25°C. What will eventually happen if 44.0 moles of NH_3 , 0.452 moles of N_2 , and 0.108 moles of H_2 are put in a 10.0 L container at 25°

It is impossible to know what will happen unless we know what the equilibrium constant is at 298

 \bigcirc More N₂ and H₂ will be formed.

 \bigcirc More NH₃ will be formed.

Nothing. The system is at equilibrium.

Question 19

Given the hypothetical reaction:

$X(g) \rightleftharpoons Y(g)$

Predict what will happen when 1.0 mol Y is placed into an evacuated container.

- \bigcirc As the reaction progresses, Q will decrease until Q = K.
- Nothing. The products are already formed, so no reaction occurs.
- As the reaction progresses, ΔG° will decrease until $\Delta G^{\circ} = 0$.
- As the reaction progresses, Q will increase until Q = K.

Question 20

What happens to the concentration of NO(g) when the total pressure on the reaction below is increased (by compression) when it is at equilibrium? $3NO_2(g) + H_2O(I) \rightleftharpoons 2HNO_3(aq) + NO(g)$

it increases

- it is impossible to tell
- it remains the same
- it decreases

Question 21

Consider the following reaction:

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

where $\Delta H_{rxn} = -198$ kJ. The amount of SO₂(g) at equilibrium increases when...

more oxygen is added.

- \bigcirc SO₃ is removed.
- the volume is increased.
- the temperature is decreased.

Question 22

Suppose the reaction mixture

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

is at equilibrium at a given temperature and pressure. The pressure is then increased at constant temperature by compressing the reaction mixture, and the mixture is then allowed to reestablish equilibrium. At the new equilibrium...

there is more ammonia present than there was originally.

there is the same amount of ammonia present as there was originally.

the nitrogen is used up completely.

there is less ammonia present than there was originally.

Question 23

Consider the system:

 $2N_2O_5(g) \rightleftharpoons 2N_2O_4(g) + O_2(g)$

1.2 pts

at equilibrium at 25°C. If this is an exothermic reaction and the temperature was raised, would the equilibrium be shifted to produce more N_2O_5 or more N_2O_4 ?

more N₂O₅

it is impossible to tell

there would be no change

more N₂O₄

Question 24

1.2 pts

The equilibrium constant K for the synthesis of ammonia is 6.8×10^5 at 298 K. What will K be for the reaction at 375 K?

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H^\circ = -92.22 \text{ kJ/mol}$

○ 1.42 x 10⁹

○ 6.75 x 10⁵

326

○ 6.85 x 10⁵

1.2 pts

1.2 pts

1.2 pts

1.2 pts