HW01 - Phase Changes/Diagrams \& Colligative Properties

Question 4	0.75 pts
Which of the phase changes below might have a $\Delta \mathrm{H}=11.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$?	
condensation	
freezing	
deposition	
evaporation	

Question 5	0.75 pts
Which of the following statements is ALWAYS true about deposition?	
$\Delta \mathrm{G}<0$	
$\Delta \mathrm{~S}>0$	
$\Delta \mathrm{H}<0$	
None of the other answers are correct	

Question 6

0.75 pts

Consider liquid ethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)$ and liquid methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. Which would you expect to have a larger $\Delta \mathrm{H}$ of vaporization?

Methanol, because it has stronger IMFs.
Ethane, because it has stronger IMFs.
It is impossible to tell unless you know the amount of each liquid involved.
Methanol because it has a larger molar mass.

Question 7
What is the change in entropy ($\Delta \mathrm{S}_{\text {vap }}$) for the vaporization of ethanol ($\Delta \mathrm{H}_{\text {vap }}=38.6$
$\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$) at its standard boiling temperature $\left(78.4^{\circ} \mathrm{C}\right)$?
$0.110 \mathrm{~J} \cdot \mathrm{~mol}-1 \cdot \mathrm{~K}-1$
$492 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}-1$
$110 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$0.492 \mathrm{~J} \cdot \mathrm{~mol}-1 \cdot \mathrm{~K}-1$

Question 8

0.75 pts

The $\Delta \mathrm{H}^{\circ}{ }_{\text {vap }}$ of methane is $8.519 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and its $\Delta \mathrm{S}^{\circ}{ }_{\text {vap }}$ is $85.58 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$. What is the boiling point of methane?
0.09954 K
99.54 K
$0.09954^{\circ} \mathrm{C}$
372.54 K

Question 9

How much heat is required to heat 2 grams of ice at $-30^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$. Use the approximate values below for your calculations:

$$
\begin{gathered}
c_{\text {ice }}=2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{O}^{-1} \\
\Delta \mathrm{H}_{\text {fus }}=340 \mathrm{~J} \mathrm{~g}^{-1} \\
\mathrm{c}_{\text {water }}=4 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1} \\
\Delta \mathrm{H}_{\text {vap }}=2260 \mathrm{~J} \mathrm{~g}^{-1} \\
\mathrm{c}_{\text {steam }}=2 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}
\end{gathered}
$$

6120 kJ

6.12 kJ
1.60 kJ
6.00 kJ
Question 10
Which of the following would change the vapor pressure of a sample of water in a closed
container?

1. decreasing the size of the container
2. lower the container temperature
3. removing water from the container

1,2 and 3
2 and 3
1 and 2
2 anly

Question 11
Which would have a higher vapor pressure: ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ or dimethyl ether
$\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$?
They would have the same vapor pressure as their molecular weights are the same.
ethanol
It is impossible to tell unless the amount of each substance is known.
dimethyl ether

Question 12
Rank the following liquids by vapor pressure from lowest to highest: $\mathrm{C}_{5} \mathrm{H}_{12}, \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{8}$,
$\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{10}$.
$\mathrm{C}_{5} \mathrm{H}_{12}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{CH}_{4}$
$\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{5} \mathrm{H}_{12}$
$\mathrm{CH}_{4}<\mathrm{C}_{5} \mathrm{H}_{12}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{5} \mathrm{H}_{12}<\mathrm{CH}_{4}$

Question 13

In a closed vessel containing water, the pressure is 18 torr. If we add more water to the vessel, this equilibrium pressure would...
change, but it is not possible to know if it will increase or decrease without more information.
decrease.
increase.
remain the same.

Question 14

0.75 pts

Consider two empty containers A and B whose volumes are 10 mL and 20 mL respectively. 1 mL of liquid water is put into each container and the temperature of each container is adjusted to $20^{\circ} \mathrm{C}$. The gas pressure in container B , which still has some liquid water in it, is found to be 17 torr. How would the pressure in container A and the amount of liquid water in container A compare to that of container B?
the pressure would be greater, there would be an equal amount of liquid water
the pressure would be greater, there would be less liquid water
the pressure would be the same, there would be more liquid water
the pressure would be the same, there would be an equal amount of liquid water

Question 15

0.75 pts

What is the vapor pressure of carbon disulfide at its normal boiling point?

$$
22.4 \mathrm{~atm}
$$

2.0 atm

Not enough information.
1.0 atm

Question 16

1.75 pts

At $20^{\circ} \mathrm{C}$ the vapor pressure of dry ice is 56.5 atm . If 10 g of dry ice (solid CO_{2}) is placed in an evacuated 0.25 L chamber at a constant $20^{\circ} \mathrm{C}$, will all of the solid sublime?

Some of the dry ice will sublime, but not all of it.
Yes.
There is not enough information to answer this question.
None of dry ice would sublime.

Question 17

An unknown liquid has a vapor pressure of 88 mmHg at $45^{\circ} \mathrm{C}$ and 39 mmHg at $25^{\circ} \mathrm{C}$.
What is its heat of vaporization?

$2000 \mathrm{~J} / \mathrm{mol}$
$2000 \mathrm{~kJ} / \mathrm{mol}$
$32,000 \mathrm{~kJ} / \mathrm{mol}$
$32 \mathrm{~kJ} / \mathrm{mol}$

Question 18

Use the phase diagram for CO_{2} provided below to answer the following question:
At 300 K and 10 bar, what is the stable phase of carbon dioxide?

gaseous carbon dioxide

carbon dioxide as supercritical fluid
liquid carbon dioxide
solid carbon dioxide

Question 19

Use the phase diagram for CO_{2} in the question above to answer the following:

A sample of carbon dioxide is stored at 10,000 bar and 250 K . This sample is then decompressed to 1 bar at constant temperature. Then, at constant pressure it is heated to 400 K . Next, it is compressed at constant temperature to 200 bar. According to the phase diagram, how many phase transitions has the sample of carbon dioxide gone through, and what is its final state?
3, supercritical fluid
2, gas
2, supercritical fluid
3, liquid
\qquad are made when \qquad are dissolved in \qquad -.
solutions, solutes, solvents
solutes, solutions, solvents
solvents, solutes, solutions
solutions, solvents, solutes

Question 21

1 pts

Both ammonia $\left(\mathrm{NH}_{3}\right)$ and phosphine $\left(\mathrm{PH}_{3}\right)$ are soluble in water. Which is least soluble and why?
ammonia because it does not form hydrogen bonds with water molecules
phosphine because the P-H bonds are so strong that they cannot break to enable phosphine to hydrogen-bond with water
ammonia because the $\mathrm{N}-\mathrm{H}$ bonds are so strong that they cannot break to enable the ammonia to hydrogen-bond with water
phosphine because it does not form hydrogen bonds with water molecules

Question 22

1 pts

Rank the following in terms of decreasing miscibility in $\mathrm{C}_{8} \mathrm{H}_{18}$ (octane), a major component of gasoline: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ (chloroethane), $\mathrm{H}_{2} \mathrm{O}$ (water), $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$ (fluoroethane), and $\mathrm{C}_{9} \mathrm{H}_{20}$ (nonane).

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}>\mathrm{C}_{9} \mathrm{H}_{20}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F} \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}>\mathrm{H}_{2} \mathrm{O}>\mathrm{C}_{9} \mathrm{H}_{20} \\
\mathrm{C}_{9} \mathrm{H}_{20}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}>\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{O}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}>\mathrm{C}_{9} \mathrm{H}_{20}
\end{gathered}
$$

Question 23

Which of the following is a possible combination of values for $\Delta H_{\text {lattice }}$ and $\Delta H_{\text {hydration }}$ respectively for a salt whose dissolution is endothermic?
+500, -520

- $-200,-304$
+640, -620
$-560,+560$

Question $\mathbf{2 4}$
Which of the following would increase the solubility of a gas in water?
1. increase the temperature of the water
2. decrease the temperature of the water
3. increase the pressure of the gas above the water
1 only 2 only 2 and 3 1 and 3

Question 25
In which of the following pairs do both compounds have a van't Hoff factor (i) of 2?
sodium chloride and magnesium sulfate
glucose and sodium chloride
perchloric acid and barium hydroxide
sodium sulfate and potassium chloride

Question 26
For solutions of a non-electrolyte, the van't Hoff factor is:

Question 27
 1 pts

How many moles of ions are contained in 1.27 L of a 1.75 M solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$? Please answer in mol.
\square

Question 28

Calculate the vapor pressure at $20^{\circ} \mathrm{C}$ of a solution containing 0.61 g of naphthalene in 16 g of chloroform $\left(\mathrm{CHCl}_{3}\right)$. Naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ has a low vapor pressure and may be assumed to be nonvolatile. The vapor pressure of chloroform at $20^{\circ} \mathrm{C}$ is 156 torr. Please answer in torr.

Question 30 1 pts

At 293 K , methanol has a vapor pressure of 97.7 Torr and ethanol has a vapor pressure of 44.6 Torr. What would be the vapor pressure of a mixture of 80 g of ethanol and 97 g of methanol at 293 K ? Please answer in torr.

Question 31

The freezing point of seawater is about $-1.85^{\circ} \mathrm{C}$. If seawater is an aqueous solution of sodium chloride, calculate the molality of seawater. The k_{f} for water is $1.86 \mathrm{~K} / \mathrm{m}$. Please answer in molal.

Question 32
What will be the freezing point of a solution of 8 moles of sodium dichromate $\left(\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$
dissolved in 16 kg of water? Please answer in K .
Use the following values:
$\mathrm{K}_{\mathrm{b}}=0.512 \mathrm{~K} / \mathrm{m}$
$\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} / \mathrm{m}$

Question 33

1 pts

Rank the following aqueous solutions from lowest to highest boiling point: $0.5 \mathrm{~m} \mathrm{NaCl}, 1$ $\mathrm{m} \mathrm{KCl}, 0.5 \mathrm{~m} \mathrm{BaCl} 2$, and $1 \mathrm{~m} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$. All salt are dissolved in water.

```
1m Ba(NO
0.5\textrm{m NaCl}<0.5\textrm{m BaCl}}<<1\textrm{m KCl}<1\textrm{m Ba}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{2}{
1m KCl< 1 m Ba(NO
0.5 m BaCl }<1\mp@code{1m KCl < 1m Ba(NO
```

