

Balance the skeletal equation of hydrazine with chlorate ions, shown below:

 $N_2H_4(g) + CIO_3^-(aq) \longrightarrow NO(g) + CI^-(aq)$

The reaction takes place in basic solution. What is the smallest possible integer coefficient of CIO_3^- in the balanced equation?

Identify the reducing agent in the reaction in question 1.

- a. CIO3⁻
- b. Cl⁻
- c. N₂H₄
- d. NO

Question 3		
In the reaction of thiosulfate ion wit	h chlorine g	as in an acidic solution,
what is the reducing agent?		

 $Cl_2(g) + S_2O_3^{2-}(aq) \longrightarrow Cl^-(aq) + SO_4^{2-}(aq)$

a. Cl₂

- b. $S_2O_3^{2-}$
- c. S²⁺
- d. Cl

Balance the reaction in question 3 using oxidation and reduction halfreactions. What is the smallest possible integer coefficient of SO $_4{}^{2\text{-}}$ in the combined balanced equation?

- a. 1
- b. 4
- c. 3
- d. 2

Balance the following equation between permanganate and formic acid in acid solution:

```
MnO_4^- + HCOOH \rightarrow Mn^{2+} + CO_2
```

Three questions: (1) Which side does water end up on? (2) What is the coefficient for H⁺? (3) What is the coefficient for formic acid (HCOOH)?

a.	right ; 5 ; 5
b.	left ; 2 ; 5
c.	left ; 6 ; 3
d.	right ; 4 ; 2
e.	right ; 6 ; 5

Chlorate ion in acidic solution will decompose to form chlorine dioxide and chloride ions:

$$CIO_2^- \rightarrow CIO_2 + CI^-$$

All species are aqueous (aq). Balance this reaction and answer these questions: (1) What is the total number of electrons transferred? (2) What is the coefficient for $\text{CIO}_2\,?\,$ (3) Which side of the reaction is H^+ and what is it's coefficient?

a.	5 e– ; 5 ; left 6
b.	2 e– ; 1 ; left 2
c.	4 e– ; 2 ; right 2
d.	4 e– ; 4 ; left 4
e.	3 e– ; 2 ; right 4
f.	4 e– ; 3 ; left 2

Consider the cell reaction represented by the skeletal equation:

 $Mn(s) + Ti^{2+}(aq) \longrightarrow Mn^{2+}(aq) + Ti(s)$

What is the proper cell diagram for this reaction?

- a. Mn²⁺(aq) | Mn(s) || Ti(s) | Ti²⁺(aq)
- b. Mn(s) | Mn²⁺(aq) || Ti²⁺(aq) | Ti(s)
- c. Ti(s) | Ti²⁺(aq) || Mn²⁺(aq) | Mn(s)
- d. Ti²⁺(aq) | Ti(s) || Mn(s) | Mn²⁺(aq)

In this electrochemical cell, what is the reduction half reaction?

- a. $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$
- b. $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$
- c. Cu(s) \longrightarrow \longrightarrow Cu²⁺(aq) + 2e⁻
- d. $Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$

In a galvanic cell...

- a. oxidation and reduction take place at the same time, but at different electrodes
- b. oxidation takes place at the cathode
- c. electrical energy is used to reverse spontaneous chemical reactions
- d. electrolytes are added to carry electrons between electrodes

Question 10

In a working electrochemical cell (a galvanic cell or a battery), the cations in the salt bridge move toward the cathode.

- a. It depends on the charge of the cation.
- b. It is impossible to tell unless we know if the cathode is "+" or "-".
- c. False
- d. True