

HW07 - Solubility Equilibria

Question 1

2.0 pts

What is the net ionic equation for the reaction between aqueous solutions of Na₃PO₄ and CuSO₄?

- a. No reaction occurs since no precipitate is formed.
- b. $Cu^{2+} + PO_4^{3-} \longrightarrow CuPO_4$
- c. $2Na^+ + SO_4^{2-} \longrightarrow Na_2SO_4$
- d. $3Cu^{2+} + 2PO_4^{3-} \longrightarrow Cu_3(PO_4)_2$

What ions are present in solution after aqueous solutions of Cu(NO 3)2 and K2S

Question 2

2.0 pts

are mixed? Assume we mixed stoichiometric equivalent amounts of both reactants and 100% reaction. a. No ions are present as both products form precipitates.

- b. Cu²⁺, S²⁻
- c. K⁺, NO₃⁻
- d. Cu^{2+} , NO_3^- , K^+ , S^{2-}

a. the number of moles that dissolve to give one liter of saturated solution.

Question 3

2.0 pts

Molar solubility is...

- c. equal to the K_{sp} .
- d. the number of moles that dissolve to give one liter of super-saturated solution.

b. the total molarity of the solution.

- The K_{sp} equation for sodium bicarbonate (NaHCO $_{3}$) should be written as: a. $K_{sp} = [Na^+][H^+][C^{4+}][O^{2-}]^3$

Question 4

2.0 pts

- c. $K_{sp} = [Na^+][H^+][CO_3^{2-}]$

d. $K_{sp} = [NaH^{2+}][CO_3^{2-}]$

b. $K_{sp} = [Na^+][HCO_3^-]$

a. $K_{sp} = [Pb^{2+}]^2[CI^-]$

following is true?

Question 5

2.0 pts

Pure water is saturated with PbCl₂. In this saturated solution, which of the

2.0 pts

c. $K_{sp} = [Pb^{2+}][Cl^{-}]$

d. $[Pb^{2+}] = [Cl^{-}]$

b. $[Pb^{2+}] = 0.5[Cl^{-}]$

A hypothetical ionic substance $\rm T_3U_2$ ionizes to form $\rm T^{2+}$ and $\rm U^{3-}$ ions. The solubility of T_3U_2 is 4.04×10^{-20} mol/L. What is the value of the solubility-

product constant?

a. 1.63×10⁻³⁹

b. 1.16×10^{-95}

Question 6

c. 9.79×10⁻³⁹ d. 1.08×10⁻⁹⁷

- Question 7
- a. 5.3×10^{-4}

b. 1.4×10^{-7}

c. 2.8×10^{-7}

per liter?

d. 7.6×10^{-7}

2.0 pts

Determine the molar solubility of some salt with the generic formula AB $_2$ if K_{sp}

The value of K_{sp} for $SrSO_4$ is 2.8×10^{-7} . What is the solubility of $SrSO_4$ in moles

Question 8

 $= 2.56 \times 10^2$.

a. 10 M

b. 4 M

c. 0.1 M

Question 9

 $Cd_3(AsO_4)_2$

AIPO₄

CaSO₄

d. 1 M

 $K_{sp} = 2.2 \times 10^{-33}$

 $K_{sp} = 9.8 \times 10^{-21}$

 $K_{sp} = 4.9 \times 10^{-5}$

Rank the following salts from least to most molar solubility: $K_{sp} = 7.7 \times 10^{-19}$ Bil

2.0 pts

3.0 pts

b. $CaSO_4 < Bil < AlPO_4 < Cd_3(AsO_4)_2$ c. $Cd_3(AsO_4)_2 < Bil < AlPO_4 < CaSO_4$

d. $AIPO_4 < BiI < Cd_3(AsO_4)_2 < CaSO_4$

a. $Cd_3(AsO_4)_2 < AIPO_4 < Bil < CaSO_4$

Question 10 A hypothetical compound MX_3 has a molar solubility of 0.00562 M. What is

the value of K_{sp} for MX_3 ?

a. 3.16×10^{-5}

b. 2.69×10^{-8}

d. 9.48×10^{-5}

c. 2.99×10^{-9}

 $BaBr_2$ in a 10L solution. (For $BaCO_3$, $K_{sp} = 2.8 \times 10^{-9}$).

a. BaBr₂ will remain in solid form as it is insoluble in water. b. BaCO₃ does not precipitate

Question 12

d. BaCO₃ precipitates

b. 1.0 M CaCl₂(aq)

c. pure water

Question 11

c. It is impossible to know if any $BaCO_3$ will precipitate with the information

2.0 pts

Determine if a precipitate will form when 0.96g Na ₂CO₃ is combined with 0.2g

soluble? a. $0.5 \text{ M K}_2\text{SO}_4(\text{aq})$

 $CaSO_4$ has a $K_{sp} = 3x10^{-5}$. In which of the following would $CaSO_4$ be the most

2.0 pts

2.0 pts

- d. $CaSO_4$ would have the same solubility in all three of these solutions
- Question 13 A solution of AgI contains 1.9 M Ag $^{+}$. $\rm K_{sp}$ of AgI is 8.3 x 10 $^{-17}$. What is the
 - a. 1.9 M b. 8.3x10⁻¹⁷ M
 - c. 1.6×10⁻¹⁶ M d. 4.4x10⁻¹⁷ M

maximum I⁻ concentration that can exist in this solution?

- Question 14
- What would be the molar solubility of Li $_3PO_4$ (K $_{sp}$ = 2.37 x 10^{-4}) in a 1M LiCl solution? a. 5.44×10^{-2}

3.0 pts

c. 2.37×10^{-4}

b. 1.24×10^{-1}