

HW07 - Solubility Equilibria

Question 1

What is the net ionic equation for the reaction between aqueous solutions of $Na_3 PO_4$ and $CuSO_4?$

- a. No reaction occurs since no precipitate is formed.
- b. $Cu^{2+} + PO_4^{3-} \longrightarrow CuPO_4$
- c. $2Na^+ + SO_4^{2-} \longrightarrow Na_2SO_4$
- d. $3Cu^{2+} + 2PO_4^{3-} \longrightarrow Cu_3(PO_4)_2$

What ions are present in solution after aqueous solutions of Cu(NO $_3$) $_2$ and K $_2$ S are mixed? Assume we mixed stoichiometric equivalent amounts of both reactants and 100% reaction.

- a. No ions are present as both products form precipitates.
- b. Cu²⁺, S²⁻
- c. K⁺, NO₃⁻
- d. Cu²⁺, NO₃⁻, K⁺, S²⁻

estion 6

A hypothetical ionic substance T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of T_3U_2 is 4.04x10^{-20} mol/L. What is the value of the solubility-product constant?

Pure water is saturated with PbCl₂. In this saturated solution, which of the

a. 1.63x10⁻³⁹

following is true?

a. $K_{sp} = [Pb^{2+}]^2[Cl^{-}]$

b. $[Pb^{2+}] = 0.5[Cl^{-}]$

c. $K_{sp} = [Pb^{2+}][CI^-]$

d. [Pb²⁺] = [Cl⁻]

- b. 1.16×10^{-95}
- c. 9.79x10⁻³⁹
- d. 1.08x10⁻⁹⁷

questions

Molar solubility is...

- a. the number of moles that dissolve to give one liter of saturated solution.
- b. the total molarity of the solution.
- c. equal to the K_{sp} .
- d. the number of moles that dissolve to give one liter of super-saturated solution.

on 7

The value of K_{sp} for SrSO4 is 2.8x10 $^{7}\!.$ What is the solubility of SrSO 4 in moles per liter?

- a. 5.3×10^{-4}
- b. 1.4×10^{-7}
- c. 2.8 x 10⁻⁷
- d. 7.6 x 10⁻⁷

Question 4

The K_{sp} equation for sodium bicarbonate (NaHCO₃) should be written as:

- a. $K_{sp} = [Na^+][H^+][C^{4+}][O^{2-}]^3$
- b. $K_{sp} = [Na^+][HCO_3^-]$
- c. $K_{sp} = [Na^+][H^+][CO_3^{2-}]$
- d. $K_{sp} = [NaH^{2+}][CO_3^{2-}]$

Determine the molar solubility of some salt with the generic formula AB $_2$ if K_{sp} = $2.56 \times 10^2.$

a. 10 M

b. 4 M

c. 0.1 M

d. 1 M

Question 9	2.0 pts	Question 12 2.0 pts
Rank the follow	ng salts from least to most molar solubility:	CaSO ₄ has a K_{sp} = 3×10 ⁻⁵ . In which of the following would CaSO ₄ be the most
Bil	K _{sp} = 7.7×10 ⁻¹⁹	soluble?
Cd ₃ (AsO ₄) ₂	$K_{sp} = 2.2 \times 10^{-33}$	a. 0.5 M K ₂ SO ₄ (aq)
AIPO ₄	K _{sp} = 9.8x10 ⁻²¹	b. 1.0 M CaCl ₂ (aq)
CaSO ₄	$K_{sp} = 4.9 \times 10^{-5}$	c. pure water
a. $Cd_3(AsO_4)_2 < AIPO_4 < Bil < CaSO_4$		d. \mbox{CaSO}_4 would have the same solubility in all three of these solutions
b. $CaSO_4 < Bil < AIPO_4 < Cd_3(AsO_4)_2$		
c. Cd ₃ (AsO ₄) ₂ < Bil < AIPO ₄ < CaSO ₄		Question 12
d. AIPO ₄ < Bil < $Cd_3(AsO_4)_2$ < $CaSO_4$		A solution of Agl contains 1.9 M Ag ⁺ . K _{sp} of Agl is 8.3 x 10 ⁻¹⁷ . What is the maximum I ⁻ concentration that can exist in this solution?
		a. 1.9 M
Question 10	3.0 pts	b. 8.3x10 ⁻¹⁷ M
A hypothetical compound MX ₃ has a molar solubility of 0.00562 M. What is the value of $K_{\rm c}$ for MX ₋₂		c. 1.6x10 ⁻¹⁶ M
a. 3.16×10^{-5}		d. 4.4×10 ⁻¹⁷ M
b. 2.69 x 10 ⁻⁸		
c. 2.99 x 10 ⁻⁹		
d. 9.48 x 10 ⁻⁵		Question 14 3.0 pts
		What would be the molar solubility of Li $_3PO_4$ (K _{sp} = 2.37 x 10 ⁻⁴) in a 1M LiCl solution?
		a. 5.44×10^{-2}

b. 1.24×10^{-1} c. 2.37×10^{-4} d. 1.54×10^{-2}

Question 11	2.0 pts		
Determine if a precipitate will form when 0.96g Na ₂ CO ₃ is combined with 0.2g			
$BaBr_2$ in a 10L solution. (For $BaCO_3$, $K_{sp} = 2.8 \times 10^{-9}$).			

a. ${\rm BaBr}_2$ will remain in solid form as it is insoluble in water.

b. $BaCO_3$ does not precipitate

c. It is impossible to know if any \mbox{BaCO}_3 will precipitate with the information given.

d. BaCO₃ precipitates