

HW06 - Buffers, Titrations, and Polyprotics

Ouestion 1

When an acid and base neutralize each other, the products are generally water and...

- a. a gel.
- b. a colloid.
- c. an ion.
- d. a salt.

Question 2

How many moles of Ca(OH) 2 are needed to neutralize three moles of HCI?

- a. 1.5
- b. 3
- c. 2
- d. 1

Question 3

An aqueous solution is prepared with 2 moles of HCl and 1 mole of Ca(OH) $_2$. The resulting solution contains mainly...

- a. water, Cl⁻ ions, and Ca²⁺ ions.
- b. water, CI^- ions, H^+ ions, OH^- ions, and Ca^{2+} ions.
- c. water, Cl⁻ ions, OH⁻ ions, and Ca²⁺ ions.
- d. water, $\text{CI}^{\text{-}}$ ions, $\text{H}^{\text{+}}$ ions, and $\text{Ca}^{2\text{+}}$ ions.

Question 4 1.0 pt

Identify the products of the following chemical reaction:

- $3LiOH + H₃PO₄ \longrightarrow$
- a. 3H⁺ + 3O₂ + H₃Li₃
- b. Li₃P + 2H₂O + H₃O₅
- c. 3LiH + (OH)₃PO₄
- d. $Li_3PO_4 + 3H_2O$

Question 5

Identify the products of the following chemical reaction:

- $Sr(OH)_2 + 2HNO_3 \longrightarrow$
- a. SrH₂ + HNO₅
- b. $SrNO_3 + H_2O$
- c. $Sr(NO_2)_2 + 2H_2O_2$
- d. $Sr(NO_3)_2 + 2H_2O$

Question 6 _{1.0 p}

Aqueous ammonia can be used to neutralize sulfuric acid and nitric acid to produce two salts extensively used as fertilizers. They are...

- a. cyanamide and cellulose nitrate, respectively
- b. NH₄SO₄ and NH₄NO₃, respectively
- c. NH₄SO₃ and NH₄OH, respetively
- d. (NH₄)₂SO₄ and NH₄NO₃, respectively

Question 7

Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid.

- a. potassium cyanide
- b. potassium amide
- c. potassium formate
- d. potassium acetate

Question 8 1.0 pt

What is the pH of an aqueous solution that is 0.018 M C $_6H_5NH_2$ (K $_b$ = 4.3x10 10) and 0.12 M C $_6H_5NH_3Cl?$

- a. 3.81
- b. 4.02
- c. 4.63
- d. 2.87

Ouestion 9

A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.33 moles of KOH into 710 mL of solution. What is the pH of this buffer? K $_{a}$ = 6×10^{-6} for HA.

- a. 5.22
- b. 8.34
- c. 13.23
- d. 5.66

uestion 10

Which one of the following combinations is NOT a buffer solution?

- a. HBr and KBr
- b. HCN and NaCN
- c. CH_3COOH and $NaCH_3COO$
- d. NH₃ and (NH₄)₂SO₄

Question 11

Which of the following mixtures will be a buffer when dissolved in a liter of water?

- a. 0.2 mol HBr and 0.1 mol NaOH
- b. 0.3 mol NaCl and 0.3 mol HCl
- c. 0.2 mol HF and 0.1 mol NaOH
- d. $0.1 \text{ mol Ca(OH)}_2 \text{ and } 0.3 \text{ mol HI}$

Question 12

What is the pH of a solution which is 0.600 M in dimethylamine ((CH $_3$) $_2$ NH) and 0.400 M in dimethylamine hydrochloride ((CH $_3$) $_2$ NH $_2$ CI)? K_b for dimethylamine = 7.4×10^{-4} .

- a. 11.21
- b. 10.78
- c. 11.05
- d 10.87

Question 13

What would be the final pH if 0.0100 moles of solid NaOH were added to 100mL of a buffer solution containing 0.600 molar formic acid (ionization constant = 1.8×10^{-4}) and 0.300 M sodium formate?

- a. 3.65
- b. 3.44
- c. 4.05
- d. 3.84

Question 14 1.0 pt

A buffer was prepared by mixing 0.200 moles of ammonia ($K_b = 1.8 \times 10^{-5}$) and 0.200 moles of ammonium chloride to form an aqueous solution with a total volume of 500 mL. 250 mL of the buffer was added to 50.0 mL of 1.00 M HCl. What is the pH of this second solution?

- a. 8.38
- b. 8.53
- c. 8.18
- d. 8.78

Question 15

A solution is 0.30 M in NH $_3$. What concentration of NH $_4$ Cl would be required to achieve a buffer solution with a final pH of 9.0? K $_b$ = 1.8x10⁻⁵ for NH $_3$.

- a. 0.32 M
- b. 0.54 M
- c. 0.10 M
- d. 0.45 M

Question 16 1.0 pt

What is the pH at the half-stoichiometric point for the titration of 0.22 M $\rm HNO_2(aq)$ with 0.1 M KOH(aq)? For $\rm HNO_2$, $\rm K_a=4.3\times10^{-4}$.

- a. 2.31
- b. 7.00
- c. 2.01
- d. 3.37

Question 17

For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with 0.020 M KOH (aq), calculate the pH after the addition of 55.0 mL of the base. For salicylic acid, pK $_a$ = 2.97.

- a. 10.98
- b. 11.26
- c. 7.00
- d. 11.02

Ouestion 18

Consider the titration of $50.0\,\text{mL}$ of $0.0200\,\text{M}$ HCIO(aq) with $0.100\,\text{M}$ NaOH(aq). What is the formula of the main species in the solution after the addition of $10.0\,\text{mL}$ of base?

- a. HCIO
- b. CIO
- c. CIO₂
- d. NaOH

Question 19 1.0 pt

50.0 mL of 0.0018 M aniline (a weak base) is titrated with 0.0048 M HNO $_3$. How many mL of the acid are required to reach the equivalence point?

- a. 133 mL
- b. This is a bad titration as \mbox{HNO}_{3} is not a strong acid.
- c. 18.8 mL
- d. 4.21 mL

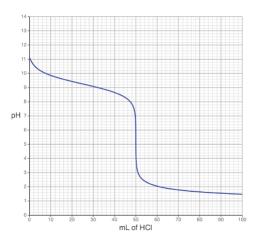
Ouestion 20

When we titrate a weak base with a strong acid, the pH at the equivalence point will be...

- a. It is impossible to know unless we are given the K $_{\mbox{\scriptsize b}}$ of the weak base.
- b. pH = 0
- c. pH > 7
- d. pH < 7

Question 21

1.0 pt


What is the pH at the equivalence point in the titration of 10.0 mL of 0.35 M unknown acid HZ with 0.200 M NaOH? $K_a = 2.4 \times 10^{-7}$ for the unknown acid HZ

- a. 9.86
- b. 10.1
- c. 7.00
- d. 4.14

Question 22

1.0 pt

What is the pH at the equivalence point of the titration pictures below?

- a. 7.0
- b. 9.2
- c. 3.4
- d. 1.8
- e. 5.5

Question 23

1.0 pts

Look at the titration diagram in the question above. What type of titration is occurring?

- a. a strong base titrated with a weak acid
- b. a weak base titrated with a strong acid
- c. a strong base titrated with a strong acid
- d. a weak base titrated with a weak acid

Ouestion 24

The acid form of an indicator is yellow and its anion is blue. The K $_{a}$ of this indicator is $10^{-5}.$ What will be the approximate pH range over which this indicator changes color?

- a. 5 < pH < 7
- b. 6 < pH < 8
- c. 4 < pH < 6
- d. 3 < pH < 5

0 ptc

The unionized form of an acid indicator is yellow and its anion is blue. The K $_{a}$ of this indicator is 10^{-5} . What will be the color of the indicator in a solution of pH $_{37}$

- a. orange
- b. blue
- c. yellow
- d. green

Question 26

2.0 pts

Aspartic acid is a polypeptide side chain found in proteins. The pK_a of aspartic acid is 3.86. If this polypeptide were in an aqueous solution with a pH of 7, the side chain would have what charge?

- a. there is no way to know
- b. negative
- c. positive
- d. neutral

Question 27

.0 pts

Blood contains a buffer of carbonic acid (H_2CO_3) and hydrogen carbonate ion (HCO_3 -) that keeps the pH at a relatively stable 7.40. What is the ratio of [HCO_3 -] / [H_2CO_3] in blood? $K_{a1}=4.30\times10^{-7}$ for H_2CO_3 . (Hint: Assume [CO_3 ²-] – 0).

- a. 1.71×10^{-14}
- b. 3.98 x 10⁻⁸
- c. 10.8
- d. 0.0926

Question 28

2.0 pts

 H_2SO_4 is a strong acid because the first proton ionizes 100%. The K_a of the second proton is 1.1×10^{-2} . What would be the pH of a solution that is 0.100 M $H_2SO_4?$ Account for the ionization of both protons.

- a. 0.963
- b. 0.955
- c. 2.05
- d. 1.00