HW05 - Acids, Bases, and Salts

Question 1

1.0 pts

In the reversible reaction
$\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$,
the two Bronsted-Lowry acids are...
a. There is only one Bronsted-Lowry acid shown: $\mathrm{H}_{3} \mathrm{O}^{+}$
b. $\mathrm{H}_{2} \mathrm{O}$ and CN^{-}
c. HCN and CN^{-}
d. HCN and $\mathrm{H}_{3} \mathrm{O}^{+}$
e. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$

Question 2

1.0 pts

A water solution of sodium acetate is basic because...
a. the acetate ion acts as a Bronsted-Lowry base in a reaction with water.
b. The statement is false. A water solution of sodium acetate is acidic.
c. sodium acetate is only weakly ionized.
d. the conjugate base of the acetate ion is a strong base

Question $3 \quad 1.0$ pts

According to the Bronsted-Lowry concept of acids and bases, which of the
following statements about a base is NOT true?
a. A base will share one of its electron pairs to bind H^{+}.
b. A base reacts with an acid to form a salt.
c. If a base is strong, then its conjugate acid will be relatively weaker.
d. A base must contain a hydroxide group.

Question 4
 1.0 pts

Which of the following is true in pure water at any temperature?
a. $\mathrm{pH}=7.0$
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
c. K_{w} decreases with increasing temperature.
d. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

Question $5 \quad 1.0 \mathrm{pts}$

What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$?
a. $3.0 \times 10^{-6} \mathrm{M}$
b. $3.3 \times 10^{-5} \mathrm{M}$
c. $1.0 \times 10^{-7} \mathrm{M}$
d. $3.3 \times 10^{-9} \mathrm{M}$

Question 7
 1.0 pts

Which of the following substances is a strong acid?
a. $\mathrm{H}_{3} \mathrm{PO}_{4}$
b. HSO_{3}
c. $\mathrm{H}_{2} \mathrm{CO}_{3}$
d. HF
e. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Question $8 \quad 1.0$ pts

HCN is classified as a weak acid in water. This means that it produces...
a. no hydronium ions.
b. a relatively small fraction of the maximum number of possible hydronium ions.
c. 100% of the maximum number of possible hydronium ions.
d. a relatively large fraction of the maximum number of possible hydronium ions.

Question 9

1.0 pts

Which of the following substances is a weak acid?
a. HI
b. HClO_{4}
c. HClO_{3}
d. $\mathrm{H}_{2} \mathrm{CO}_{3}$
e. HBr
f. HNO_{3}
g. $\mathrm{H}_{2} \mathrm{SO}_{4}$
h. HCl

Question 10

1.0 pts

Which is NOT a conjugate acid-base pair, respectively?
a. $\mathrm{HCN}: \mathrm{CN}^{-}$
b. $\mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}$
c. $\mathrm{SO}_{4}{ }^{2-}: \mathrm{HSO}_{4}$
d. $\mathrm{H}_{3} \mathrm{O}^{+}: \mathrm{H}_{2} \mathrm{O}$

Question 11
 1.0 pts

The conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
a. HSO_{4}
b. $\mathrm{SO}_{4}{ }^{2-}$
c. HSO_{4}
d. $\mathrm{H}_{3} \mathrm{SO}_{4}{ }^{+}$

Question 12

1.0 pts

What is the conjugate acid of $\mathrm{NO}_{3}{ }^{-}$?
a. NH_{3}
b. HNO_{3}
c. $\mathrm{NO}_{3}{ }^{2-}$
d. $\mathrm{NO}_{2}{ }^{-}$

Assume that five weak acids, identified only by numbers (1, 2, 3, 4, and 5) have the following ionization constants:
$1-1.0 \times 10^{-3}$
$2-3.0 \times 10^{-5}$
$3-\quad 2.6 \times 10^{-7}$
$4-4.0 \times 10^{-9}$
$5-\quad 7.3 \times 10^{-11}$
The anion of which acid is the strongest base?
$\begin{array}{ll}\text { a. } & 3 \\ \text { b. } 2 \\ \text { c. } 5 \\ \text { d. } 4 \\ \text { e. } 1\end{array}$

Question 14
1.0 pts

The term "K K_{a} for the ammonium ion" describes the equilibrium constant for
which of the following reactions?
a. $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
b. $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
d. $\mathrm{NH}_{4} \mathrm{Cl}($ solid $)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$

Question 15

1.0 pts

If the value of K_{b} for pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ is 1.8×10^{-9}, calculate the equilibrium constant for the following reaction:
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}$
a. -1.8×10^{-9}
b. 5.6×10^{-6}
c. 1.8×10^{-16}
d. 5.6×10^{8}

Question 16

1.0 pts

What is $\left[\mathrm{OH}^{-}\right]$in a 0.0050 M HCl solution?
a. $2.0 \times 10^{-12} \mathrm{M}$
b. $1.0 \times 10^{-7} \mathrm{M}$
c. 1.0 M
d. 6.6×10^{-5}

Question 18 1.0 pts

What is the pH of a $0.1 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ aqueous solution?
a. 1.33
b. 8.7
c. 13.3
d. 9.98

Question 19

1.0 pts

Hydroxylamine is a weak molecular base with $\mathrm{K}_{\mathrm{b}}=6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of hydroxylamine?
a. 10.4
b. 9.48
c. 9.26
d. 8.93

Question 20

What is the pH of a 0.23 M solution of potassium generate (KR-COO)? K_{a} for the generic acid $\mathrm{R}-\mathrm{COOH}$ is 2.7×10^{-8}.
a. 10.83
b. 10.23
c. 10.60
d. 10.47

Question 21

1.0 pts

Which solution has the highest pH ?
a. $0.1 \mathrm{M} \mathrm{KClO}, \mathrm{K}_{\mathrm{a}}$ for HClO is 3.5×10^{-8}
b. 0.1 M of $\mathrm{KNO}_{2}, \mathrm{~K}_{\mathrm{a}}$ for HNO_{2} is 4.5×10^{-4}
c. 0.1 M of $\mathrm{KCl}, \mathrm{K}_{\mathrm{a}}$ for HCl is VERY LARGE!!
d. $0.1 \mathrm{M} \mathrm{KCH}_{3} \mathrm{COO}, \mathrm{K}_{\mathrm{a}}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}

Question 22

What is the pH of a solution that contains 11.7 g of NaCl for every 200 mL of solution?
a. 9.0
b. 7.0
c. 10^{-1}
d. 1.0×10^{-7}

Question 23

What is the pH of a solution made by mixing 0.050 mol of NaCN with enough water to make a liter of solution? K_{a} for HCN is 4.9×10^{-10}.
a. 12
b. 11
c. 10^{-3}
d. 3

Identify the list in which all salts produce a basic aqueous solution.
a. $\mathrm{KCH}_{3} \mathrm{COO}, \mathrm{NaCN}, \mathrm{KF}$
b. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3} \mathrm{NO}_{3}, \mathrm{Fel}_{3}$
c. $\mathrm{AgNO}_{3}, \mathrm{NaCHO}_{2}, \mathrm{Crl}_{3}$
d. $\mathrm{AlCl}_{3}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{KClO}_{4}$

Question $25 \quad 1.0$ pts

What is the pH in a solution made by dissolving 0.100 moles of sodium
acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$ in enough water to make one liter of solution? K_{a} for
$\mathrm{CH}_{3} \mathrm{COOH}$ is 1.80×10^{-5}.
a. 10.25
b. 8.87
c. 5.74
d. 9.25

```
Question 26 1.0 pts
A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of
3.00 at room temperature. What is the ionization constant of this acid?
a. 5.3
b. \(5.0 \times 10^{-6}\)
c. \(1.0 \times 10^{-3}\)
d. \(2.0 \times 10^{-9}\)
```


Question 27
 1.0 pts

What is the percent ionization for a weak acid HX that is 0.40 M ? $\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-}$
7 .
a. 0.0010%
b. 0.20%
c. 0.10%
d. 0.0020%

Question $28 \quad 1.0$ pts

A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the
solution?
a. 0.55
b. 2.01
c. 1.46
d. 3.17

Question 29

2.0 pts

The pH of 0.010 M aqueous aniline is 8.32 . What is the percentage
protonated?
a. 0.021%
b. 0.0021%
c. It is impossible to tell without knowing the K_{a} or the K_{b} for aniline.
d. 2.1%

