Question 1 2.0 pts

Consider the reaction:
$\mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g})$
If the initial concentration of $\mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$ is 1.0 M and \times is the equilibrium concentration of $\mathrm{CO}(\mathrm{g})$, what is the correct equilibrium relation?
a. $K_{c}=\frac{4 x}{(1.0-4 x)}$
b. $K_{c}=\frac{256 x^{4}}{(1.0-4 x)}$
c. $K_{c}=\frac{x^{5}}{\left(1.0-\frac{x}{4}\right)}$
d. $K_{c}=\frac{x^{4}}{\left(1.0-\frac{x}{4}\right)}$

Question 2

Suppose the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
has an equilibrium constant $\mathrm{K}_{\mathrm{c}}=49$ and the initial concentrations of H_{2} and I_{2}
is 0.5 M and of HI is 0.0 M . Which of the following is the correct value for the final concentration of $\mathrm{HI}(\mathrm{g})$?
a. 0.219 M
b. 0.778 M
c. 0.250 M
d. 0.599 M

Question 4
2.0 pts

At $990^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=1.6$ for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
How many moles of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are present in an equilibrium mixture resulting from the addition of 1.00 mole of $\mathrm{H}_{2}, 2.00$ moles of $\mathrm{CO}_{2}, 0.75$ moles of $\mathrm{H}_{2} \mathrm{O}$, and 1.00 mole of CO to a 5.00 liter container at $990^{\circ} \mathrm{C}$?
a. 1.1 mol
b. 1.7 mol
c. 0.60 mol
d. 1.0 mol

Question 5

The system
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
is at equilibrium at some temperature. At equilibrium, a 4.00 L vessel contains 1.00 mole $\mathrm{CO}_{2}, 1.00$ mole $_{2}, 2.40$ moles $\mathrm{H}_{2} \mathrm{O}$, and 2.40 moles CO . How many moles of CO_{2} must be added to this system to bring the equilibrium CO concentration to $0.669 \mathrm{~mol} / \mathrm{L}$?
a. 0.069 moles
b. 0.498 moles
c. 0.993 moles
d. 0.429 moles

Question 3

2.0 pts

The system
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
is at equilibrium at a fixed temperature with a partial pressure of H_{2} of 0.200 atm, a partial pressure of I_{2} of 0.200 atm, and a partial pressure of HI of 0.100 atm. An additional 0.26 atm pressure of HI is admitted to the container, and it is allowed to come to equilibrium again. What is the new partial pressure of HI?
a. 0.360 atm
b. 0.464 atm
c. 0.104 atm
d. 0.152 atm

Question 6

To soften the point pain for only 6 (previous) questions, I'm throwing in this super easy 7 th one worth 8 points... padding your score.

I've got a tank with a fairly decent pressure of A in it. It reacts according to the reaction shown:

$$
\mathrm{A}(\mathrm{~g}) \rightleftharpoons \mathrm{B}(\mathrm{~g})
$$

After the reaction, half of the A has reacted. What is the value of K_{p} ?
a. 0.25
b. 2.0
c. 0.5
d. 4.0
e. 1.0

