

HW04 - Predicting EQ Conc (RICE Tables)

Consider the reaction:

 $Ni(CO)_4(g) \rightleftharpoons Ni(s) + 4CO(g)$

If the initial concentration of Ni(CO) $_4(g)$ is 1.0 M and x is the equilibrium concentration of CO(g), what is the correct equilibrium relation?

estion 4	2.0

At 990°C, $K_c = 1.6$ for the reaction

 $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$

How many moles of $\rm H_2O(g)$ are present in an equilibrium mixture resulting from the addition of 1.00 mole of $\rm H_2,$ 2.00 moles of CO $_2,$ 0.75 moles of $\rm H_2O$, and 1.00 mole of CO to a 5.00 liter container at 990°C?

- a. 1.1 mol
- b. 1.7 mol
- c. 0.60 mol
- d. 1.0 mol

Question 2 2.0 pts	Question 5 2.0 pts
Suppose the reaction	The system
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	$CO_2(g) + H_2(g) \rightleftharpoons H_2O(g) + CO(g)$
has an equilibrium constant $K_c = 49$ and the initial concentrations of H_2 and I_2 is 0.5 M and of HI is 0.0M. Which of the following is the correct value for the final concentration of HI(g)? a. 0.219 M	is at equilibrium at some temperature. At equilibrium, a 4.00L vessel contains 1.00 mole CO ₂ , 1.00 mole H ₂ , 2.40 moles H ₂ O, and 2.40 moles CO. How many moles of CO ₂ must be added to this system to bring the equilibrium CO concentration to 0.669 mol/L?
b. 0.778 M	a. 0.069 moles
c. 0.250 M	b. 0.498 moles
d. 0.599 M	c. 0.993 moles
	d. 0.429 moles

Question 3	2.0 pts	Question 6	8.0 pts	
The system	he system		To soften the point pain for only 6 (previous) questions, I'm throwing in this	
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is at equilibrium at a fixed temperature with a partial pressure of H ₂ of 0.200 etc. a partial pressure of L of 0.200 etc. and a partial pressure of HI of 0.100		super easy 7th one worth 8 points padding your score.		
		I've got a tank with a fai reaction shown:	rly decent pressure of A in it. It reacts accor	ding to the
atm, a partial pressure of 1 atm. An additional 0.26 atr	n pressure of HI is admitted to the container, and it	A(g) ≓ B(g)		
is allowed to come to equil	ibrium again. What is the new partial pressure of			

HI?

- a. 0.360 atm
- b. 0.464 atm
- c. 0.104 atm
- d. 0.152 atm

After the reaction, half of the A has reacted. What is the value of K_p ?

a.	0.25
b.	2.0
c.	0.5

d. 4.0

e. 1.0