Question 1

1.5 pts

When the chemical reaction
$A+B \rightleftharpoons C+D$
is at equilibrium, which of the following is true?
a. all four concentrations are equal
b. neither the forward nor the reverse reactions have stopped
c. the sum of the concentrations of A and B equals the sum of the concentrations of C and D
d. both the forward and reverse reactions have stopped

Question 2

1.5 pts

Explain why equilibrium constants are dimensionless.
a. They are dimensionless because the pressures or concentrations we put in are all for the substances in their standard states.
b. This is a trick question. Equilibrium constants have units that involve some multiple of atmospheres or moles per liter.
c. They are not really dimensionless, but we must treat them as such in order to be able to take $\ln (K)$ in the expression:
$\Delta G^{\circ}=-R T \ln K$
d. Every concentration or pressure that enters into K_{c} or K_{p} is really divided by the corresponding concentration or pressure of the substance in its standard state.

Question 3

 1.5 ptsThe expression for K_{p} for the reaction
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
at equilibrium is:
a. $\frac{P_{\mathrm{H}_{2} \mathrm{O}}^{6} P_{\mathrm{NO}}^{4}}{P_{\mathrm{O}_{2}}^{5} P_{\mathrm{NH}_{3}}^{4}}$
b. $P_{\mathrm{NH}_{3}}^{4} P_{\mathrm{O}_{2}}^{5}$
c. No answer text provided.
$\frac{P_{\mathrm{NH}}^{4} P_{\mathrm{O}_{2}}^{5}}{P_{\mathrm{NO}}^{4} P_{\mathrm{H}_{2} \mathrm{O}}^{6}}$
e. $\frac{P_{\mathrm{NO}} P_{\mathrm{H}_{2} \mathrm{O}}}{P_{\mathrm{NH}_{3}} P_{\mathrm{O}_{2}}}$

Question 4

1.5 pts

Consider the following reactions at $25^{\circ} \mathrm{C}$:

$2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{K}_{\mathrm{P}}=1 \times 10^{30}$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{K}_{\mathrm{P}}=5 \times 10^{-82}$
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{K}_{\mathrm{P}}=3 \times 10^{91}$

Which compound is most likely to dissociate and give $\mathrm{O}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$?
a. CO_{2}
b. NO
c. $\frac{P_{\mathrm{NO}} P_{\mathrm{H}_{2} \mathrm{O}}}{P_{\mathrm{NH}_{3}} P_{\mathrm{O}_{2}}}$
d. $\mathrm{H}_{2} \mathrm{O}$

Question 5 1.5 pts

At $600^{\circ} \mathrm{C}$, the equilibrium constant for the reaction
$2 \mathrm{HgO}(\mathrm{s}) \longrightarrow 2 \mathrm{Hg}(\ell)+\mathrm{O}_{2}(\mathrm{~g})$
is 2.8. Calculate the equilibrium constant for the reaction
$0.5 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{Hg}(\ell) \longrightarrow \mathrm{HgO}(\mathrm{s})$.
a. 0.60
b. CO
c. 1.1
d. 1.7

Question 6
 1.5 pts

Consider the reaction
$2 \mathrm{HgO}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Hg}(\ell)+\mathrm{O}_{2}(\mathrm{~g})$
What is the form of the equilibrium constant K_{p} for this reaction?
a. $\frac{P_{\mathrm{O}_{2}}}{P_{\mathrm{HgO}}^{2}}$
b. $\frac{P_{\mathrm{Hg}}^{2} P_{\mathrm{O}_{2}}}{P_{\mathrm{HgO}}^{2}}$
c. $P_{\mathrm{O} 2}$
d. $P_{\mathrm{Hg}}^{2} P_{\mathrm{O} 2}$

Question 7

1.5 pts

$K_{p}=2.6 \times 10^{8}$ at 825 K for the reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
The equilibrium pressure of H_{2} is 0.0020 atm and S_{2} is 0.0010 atm . What is the equilibrium pressure of $\mathrm{H}_{2} \mathrm{~S}$?
a. 0.10 atm
b. 1.0 atm
c. 0.0010 atm
d. 0.36

Question 8

1.5 pts

Consider the reaction below
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
At 1000 K the equilibrium pressures of the three gases in one mixture were found to be 0.562 atm $\mathrm{SO}_{2}, 0.101$ atm O_{2}, and 0.332 atm SO_{3}. Calculate the value of K_{p} for the reaction.
a. 2.64
b. 0.298
c. 0.171
d. 3.46

Consider the following reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p}}=2.40 @ 373 \mathrm{~K}$
Calculate K_{c} for this reaction at $100^{\circ} \mathrm{C}$.
a. 10 atm
b. 73.5
c. 19.7
d. 0.0784

Question 10

1.5 pts

Calculate the equilibrium constant at $25^{\circ} \mathrm{C}$ for a reaction for which $\Delta \mathrm{G}^{\circ}=$
$-4.22 \mathrm{kcal} / \mathrm{mol}$. Include the sign if needed and round to the second
decimal place.

Question 11

1.5 pts

The figure below represents a reaction at 298 K .

extent of reaction

Based on the figure, which of the following statements (if any) are FALSE?
a. At point C , the system is at equilibrium.
b. None of the other statements are false.
c. For this reaction, ΔG° is negative.
d. At point D , the reaction will move toward the reactants to get to equilibrium.
e. At point $B, Q<K$.

Question 12

1.5 pts

Consider the reaction:
$\mathrm{C}_{\text {graphite }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}=-400 \mathrm{~kJ}$
Which of the following is a possible value of K for this reaction?
a. At point $\mathrm{B}, \mathrm{Q}<\mathrm{K}$.
b. 10^{-70}
c. 10^{70}
d. 0.56

Question 13

1.5 pts

The reaction
$A+B \rightleftharpoons C+2 D$
has an equilibrium constant of 3.7×10^{-3}. Consider a reaction mixture with:
$[\mathrm{A}]=2.0 \times 10^{-2} \mathrm{M}$
$[B]=1.7 \times 10^{-4} \mathrm{M}$
$[C]=2.4 \times 10^{-6} \mathrm{M}$
[D] $=3.5 \times 10^{-3} \mathrm{M}$
Which of the following statements is definitely true?
a. -0.56
b. The reverse reaction will occur to a greater extent than the forward reaction until equilibrium is established.
c. The system is at equilibrium.
d. The forward reaction will occur to a greater extent than the reverse reaction until equilibrium is established.

Question 14

1.5 pts

The reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
has an equilibrium constant, K_{p}, of 4.0×10^{8} at $25^{\circ} \mathrm{C}$. What will eventually happen if 44.0 moles of $\mathrm{NH}_{3}, 0.452$ moles of N_{2}, and 0.108 moles of H_{2} are put in a 10.0 L container at $25^{\circ} \mathrm{C}$.
a. More N_{2} and H_{2} will be formed.
b. No conclusions about the system can be made without additional information.
c. It is impossible to know what will happen unless we know what the equilibrium constant is at 298 K .
d. Nothing. The system is at equilibrium.

Question 15

Given the hypothetical reaction:
$X(\mathrm{~g}) \rightleftharpoons \mathrm{Y}(\mathrm{g})$
Predict what will happen when 1.0 mol Y is placed into an evacuated container.
a. Nothing. The products are already formed, so no reaction occurs.
b. More NH_{3} will be formed.
c. As the reaction progresses, Q will increase until $\mathrm{Q}=\mathrm{K}$.
d. As the reaction progresses, ΔG° will decrease until $\Delta G^{\circ}=0$.

Question 16

1.5 pts

What happens to the concentration of $\mathrm{NO}(\mathrm{g})$ when the total pressure on the reaction below is increased (by compression) when it is at equilibrium?
$3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$
a. it remains the same
b. it is impossible to tell
c. As the reaction progresses, Q will decrease until $Q=K$.
d. it increases

Question 17

1.5 pts

Consider the following reaction:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
where $\Delta H_{\mathrm{rxn}}=-198 \mathrm{~kJ}$. The amount of $\mathrm{SO}_{2}(\mathrm{~g})$ at equilibrium increases
when...
a. the volume is increased.
b. the temperature is decreased.
c. SO_{3} is removed.
d. it decreases

Question $18 \quad 1.5$ pts

Suppose the reaction mixture
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
is at equilibrium at a given temperature and pressure. The pressure is then increased at constant temperature by compressing the reaction mixture, and the mixture is then allowed to reestablish equilibrium. At the new
equilibrium...
a. there is the same amount of ammonia present as there was originally.
b. there is less ammonia present than there was originally.
c. more oxygen is added.
d. the nitrogen is used up completely.

Question $19 \quad 1.5$ pts

Consider the system:
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
at equilibrium at $25^{\circ} \mathrm{C}$. If this is an exothermic reaction and the
temperature was raised, would the equilibrium be shifted to produce more
$\mathrm{N}_{2} \mathrm{O}_{5}$ or more $\mathrm{N}_{2} \mathrm{O}_{4}$?
a. it is impossible to tell
b. more $\mathrm{N}_{2} \mathrm{O}_{5}$
c. there would be no change
d. more $\mathrm{N}_{2} \mathrm{O}_{4}$

Question 20

The equilibrium constant K for the synthesis of ammonia is 6.8×10^{5} at
298 K . What will K be for the reaction at 375 K ?
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\circ}=-92.22 \mathrm{~kJ} / \mathrm{mol}$
a. there is more ammonia present than there was originally.
b. 1.42×10^{9}
c. 326
d. 6.85×10^{5}

