version: 249

$\mathsf{Exam}\, 2 \,\text{-}\, \mathsf{S23} \,\text{-}\, \mathsf{McCord} \,\text{-}\, \mathsf{ch302}$

last name

first name

signature

1																	18
1]																2
H 1.008	2											13	14	15	16	17	He 4.003
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01 14	14.01	16.00	19.00 17	20.18
11 Na	12 Mg											13 Al	Si	15 P	16 S	CI	18 Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.64	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
(223)	(226)	(227)	(267)	(268)	(269)	(270)	(270)	(278)	(281)	(282)	(285)	(286)	(289)	(290)	(293)	(294)	(294)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(266)

constants
R=0.08206L atm/mol K
$R=0.08314~{\rm L~bar/mol~K}$
R = 62.36 L Torr/mol K
R=8.314L kPa/mol K
$R=8.314~{\rm J/mol~K}$
$N_{\rm A}=6.022\times 10^{23}~/{\rm mol}$

<u>conversions</u>

1 atm = 760 torr 1 atm = 14.7 psi 1 atm = 101325 Pa 1 atm = 1.01325 bar $1 \text{ bar} = 10^5 \text{ Pa}$ $^{\circ}\text{F} = ^{\circ}\text{C}(1.8) + 32$ $\text{K} = ^{\circ}\text{C} + 273.15$

conversions

1 in = 2.54 cm
1 ft = 12 in
1 yd = 3 ft
1 mi = 5280 ft
1 lb = 453.6 g
1 ton = 2000 lbs
1 tonne = 1000 kg
1 gal = 3.785 L
$1 \text{ gal} = 231 \text{ in}^3$
1 gal = 128 fl oz
$1~{\rm fl~oz}=29.57~{\rm mL}$
1 Troy oz = 31.104 g

water data
$C_{\rm s,ice} = 2.09~\rm J/g~^\circ C$
$C_{\rm s,water} = 4.184 \text{ J/g} \circ \text{C}$
$C_{\rm s,steam} = 2.03 \ {\rm J/g} \ ^{\circ}{\rm C}$
$\rho_{\rm water} = 1.00~{\rm g/mL}$
$\rho_{\rm ice}=0.9167~{\rm g/mL}$
$\rho_{\rm seawater} = 1.024~{\rm g/mL}$
$\Delta H_{\rm fus} = 334~{\rm J/g}$
$\Delta H_{\rm vap} = 2260~{\rm J/g}$
$k_{\rm f} = 1.86 \ ^{\circ}{\rm C}/m$
$k_{\rm b}=0.512~{\rm ^\circ C}/m$

This exam should have exactly 25 questions. Each question is equally weighted at 4 points each. You will enter your answer choices on the virtual bubblehseet after you have finished. Your score is based on what you submit on the virtual bubblesheet and not what is circled on the exam.

1. You go into the lab and mix up 100 mL of a buffer which is 0.15 M in HA and 0.10 M in A⁻. You then add 150 mL of 0.1 M NaOH. What is the new pH? Assume that $K_{\rm a}$ for HA = 6.4×10^{-5} .

- a. 5.40
- b. 6.91
- c. 2.34
- •d. 8.60
- e. 4.19
- f. 11.88

Explanation: Initial amounts are 15 mmol HA and 10 mmol A-. You add 15 mmol OH-. This completely converts all of the HA to A-. So you now have 25 mmol of A- in 250 mL of solution which means you have 0.10 M A- (it's all weak base). Kb = Kw/Ka = $10^{-14}/6.4 \times 10^{-5} = 1.56 \times 10^{-10}$. Now use [OH-] = $\sqrt{Kb(C_A)} = 3.95 \times 10^{-6}$. pOH = 5.40 and pH = 8.60

2. According to the Lewis Theory of acids and bases, an acid is:

- a. A proton donor.
- b. An electron acceptor.
 - c. An electron donor.
 - d. A substance which when dissolved in water yields hydroixde ions.
 - e. A proton acceptor.

Explanation: Lewis theory deals with e- pair donating and accepting.

3. A solution of RbOH has a pH of 9.87. What is the concentration of RbOH?

- a. 8.1×10^{-2} M b. 7.4×10^{-5} M c. 1.4×10^{-10} M d. 3.3×10^{-3} M
- e. $6.1\times10^{-4}~{\rm M}$

Explanation: pOH = 14 - 9.87 = 4.13. [OH-] = $10^{-4.13} = 7.4 \times 10^{-5}$ M

- 4. What is the pH of 0.0033 M Ba(OH)₂?
- a. 11.52
- b. 8.70
- •c. 11.82
 - d. 11.96
- e. 2.18
- f. 2.48

Explanation: This is a double base - two OH-'s, so first double the concentration to get 0.0066 M [OH-]. Now take -log to get pOH = 2.18, subtract from 14 to get pH = 11.82

5. (Part 1 of 2) You decide to titrate a solution of NaH₂PO₄. You add just enough NaOH to achieve an equal ratio of NaH₂PO₄ and Na₂HPO₄. What is the pH of this solution? (for H₃PO₄, $pK_{a1} = 2.12$, $pK_{a2} = 7.21$, $pK_{a3} = 12.32$)

- a. 12.32
- b. 4.67
- •c. 7.21
- d. 9.77
- e. 2.12

Explanation: Anytime you have equal amounts (a 1-to-1 ratio) of conjugates, your pH will equal pKa. The pKa for this pair is pKa2 which is 7.21.

6. (Part 2 of 2) You decide to repeat the experiment from the previous question, but this time you add just enough NaOH to neutralize all of the NaH₂PO₄, leaving you with only Na₂HPO₄. What is the pH of this solution?

a. 2.12

b. 12.32

c. 7.21

 $d.\ 4.67$

•e. 9.77

Explanation: When you neutralize all of the diprotic, you have a solution of only monoprotic acid (HPO_4^{2-}) . This is in between pKa2 and pKa3, so you average them. (7.21+12.32)/2 = 9.77.

7. A 0.025 M solution of a weak base has a measured pH of 11.65. What is the percent ionization of this base?.

a. 15%

- b. 7.5%
- c. 12%
- •d. 18%
- e. 1.2%

Explanation: pOH is 14 - 11.65 = 2.35 which corresponds to a OH- conc of 0.0045 M. $0.0045/0.025 \times 100\% = 18\%$

8. Consider these four acids for this question. Each are listed by name and their corresponding $K_{\rm a}$ values:

benzoic acid 6.4×10^{-5} $\,$ hydrazoic acid 2.5×10^{-5}

formic acid 1.8×10^{-4} chlorous acid 1.2×10^{-2} Now you mix up equimolar solutions of each acid. Which acid solution has the highest pH?

a. benzoic acid

- b. formic acid
- c. chlorous acid
- •d. hydrazoic acid
- e. It is not possible to say.

Explanation: The highest pH will be from the weakest acid in the group. The weakest acid will the one with the smallest value of Ka which is hydrazoic acid.

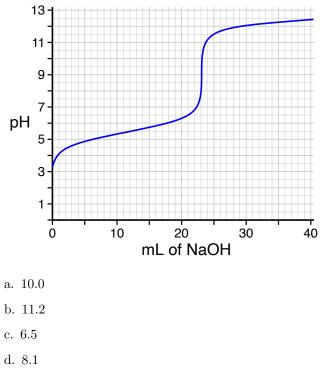
9. Acrylic acid is a feedstock which forms the basis for a number of useful products such as paints, absorbents, and glues. What is the pH of a 0.067 M acrylic acid solution? (For acrylic acid, $K_{\rm a} = 5.6 \times 10^{-5}$)

a. 9.81

- b. 1.17
- ●c. 2.71
- d. 3.55
- e. 8.42

Explanation: Use the assumption shortcut: $[H+] = \sqrt{Ka(conc)} = 1.94 \times 10^{-3}$ M which gives a pH of 2.71.

10. What is the conjugate base of trichloroacetic acid (Cl_3CO_2H) ?


- a. $Cl_3CO_2H_2^-$
- •b. $Cl_3CO_2^-$

- d. It is not possible to say.
- e. $Cl_3CO_2^+$

Explanation: remove one H+ to get $Cl_3CO_2^-$

c. $Cl_3CO_2H_2^+$

11. (Part 1 of 4) 50 mL of an unknown monoprotic acid solution is titrated with 0.026 M NaOH. The titration curve for this is shown below. What is the pH at the equivalence point of this titration?

[•]e. 9.1

Explanation: The endpoint volume is easily seen at 23 mL. The center of the vertical rise is at 9.1 (this is the best number of those listed).

12. (Part 2 of 4) Again using the titration curve, what is the K_a of the unknown weak acid?

a. 8.8×10^{-7}

b. 1.8×10^{-6}

•c. 3.2×10^{-6}

- d. 6.3×10^{-6}
- e. 1.1×10^{-5}

Explanation: Go to half titration volume (11.5 mL) and read the pH there of 5.5. Now convert to Ka via $10^{-5.5} = 3.2 \times 10^{-6}$.

13. (Part 3 of 4) Again using the titration curve, determine the concentration of the starting acid solution.

- a. $0.015 {\rm M}$
- b. $0.024 {\rm M}$
- •c. 0.012 M
- d. $0.057 {\rm M}$
- e. $0.0082 {\rm M}$

Explanation: 23mL(0.026M) = 0.598 mmol OH-. acid conc = 0.598/50 mL = 0.012 M

14. (Part 4 of 4) Finally, referring to the titration curve, which indicator would be best for this titration?

- a. phenol red (yellow to red, pH 6.6-8.0)
- b. propyl red (red to yellow, pH 4.8-6.6)
- c. methyl orange (red to yellow, pH 3.2-4.4)
- d. bromocresol purple (yellow to purple pH 5.2-6.8)
- •e. phenolphthalein (colorless to pink, pH 8.2-10.0)
- f. alizarin yellow (yellow to red, pH 10.1-12.0)

Explanation: the phenolphthale in is the only one with the 9.1 equivalence point pH in the transition of its color range.

15. You mix up a 0.01 M weak acid solution. Which of the following is a reasonable guess for the pH of the solution?

- a. 12.0
- b. 7.0
- •c. 5.4
- d. 8.8
- e. 2.0

Explanation: A weak acid will be acidic and therefore a pH less than 7. However, a pH of 2 would me the acid is strong... therefore, only 5.4 is a logical choice for the pH of this weak acid. 16. What is the pH of 0.0045 M HClO₄?

a. 1.35

- b. 11.65
- c. 3.73
- d. 8.93
- •e. 2.35

Explanation: strong acid. $-\log(0.0045)$) and get pH = 2.35

17. We learned in our study of equilibrium that the value of K will change with temperature. $K_{\rm w}$ is 1.0×10^{-14} at 25 °C. As water gets warmer and warmer the value of $K_{\rm w}$ increases. How does this affect what we call neutral pH which is normally 7.0 ?

•a. will cause it to drop a bit, pH < 7

b. will not affect it, it remains pH 7

c. will cause it to rise a bit, pH > 7

Explanation: Definition of neutral pH is when [H+] = [OH-] and means that the concentration of each of those is $\sqrt{K_w}$. If K_w increases (say 2.5×10^{-14} for example), then so does $\sqrt{K_w}$, which for this example would be 1.58×10^{-7} M which will be a neutral pH of 6.80 (less than 7).

18. (Part 1 of 2) How much 0.28 M HCl solution is needed to neutralize 1400 mL of 0.035 NaOH?

- a. 1400 mL $\,$
- •b. 175 mL
- c. 125 mL
- d. $300~\mathrm{mL}$
- e. 1750 mL
- f. 225 mL $\,$

Explanation: $M_A V_A = M_B V_B$ solve for V_A . $V_A = 0.035(1400)/0.28 = 175$ mL **19.** (Part 2 of 2) Referring to the previous question, which best describes the pH at the equivalence point of the titration?

a. It is not possible to say.

- b. 8.1
- c. 6.3
- d. 9.5
- •e. 7.0
- f. 5.4

Explanation: The equivalence point of any strong acid with strong base is a water solution of a neutral salt (no acid or base is present) and therefore perfectly neutral at pH of 7.

20. (Part 1 of 2) Hexahydroxybenzene ($C_6H_6O_6$) is a hexaprotic acid whose salts have been considered for use as a battery electrolyte. If we represent the acid in a general way (H_6A), what is the conjugate acid of H_3A^{3-} ?

- a. H_2A^{2-}
- b. $H_2 A^{4-}$
- •c. $H_4 A^{2-}$
- d. H_3A^{2-}
- e. $H_4 A^{4-}$

Explanation: ADD one H+ to get H_4A^{-2}

21. (Part 2 of 2) Referring to the last question, which $K_{\rm a}$ relates to the previously mentioned conjugate pair?

- a. K_{a5}
- b. K_{a4}
- c. K_{a1}
- •d. K_{a3}
- e. K_{a6}
- f. K_{a2}

Explanation: The pairing of H_4A^{-2} and H_3A^{-3} corresponds to the removal of the 3rd proton in the sequence and means that K_{a3} is what relates them.

22. You have a solution where you know that the $[H^+]$ is exactly 3.5 times that of $[OH^-]$. What is the pH of the solution?

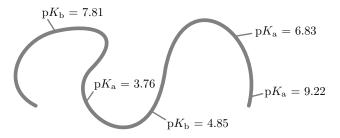
- •a. 6.73
 - b. 7.27
- c. 2.23
- d. 5.32
- e. 8.65

Explanation: [H+][OH-] = Kw, (3.5x)(x) =Kw, $x = \sqrt{Kw/3.5} = 5.35 \times 10^{-8}$. [H+] = $3.5x = 3.5(5.35 \times 10^{-8}) = 1.87 \times 10^{-7}$ M. Take -log and get pH = 6.73.

23. Consider the triprotic acid H₃A. It possesses $pK_{a1} = 2.30$, $pK_{a2} = 7.03$, $pK_{a3} = 11.52$. What is the main species present in a solution with pH = 5.6?

a. HA^{3-}

- b. H_3A
- c. HA^{2-}
- d. A^{3-}
- •e. H_2A^-


Explanation: For any weak acid, if the pH is below the pKa of the acid by more than 1 unit, then the major species is the protonated acid. On the other hand, if you the pH is above the pKa by more than 1 pH unit the major species is the deprotonated acid. Thus, at a pH of 5.6, the protons associated with pKa = 7.03 and 11.52 are still present, where as the proton associated with pKa = 2.30 is deprotonated. Overall, this is H_2A^- .

24. Which of the following is not a strong acid?

- a. hydroiodic acid
- b. hydrobromic acid
- c. sulfuric acid
- •d. nitrous acid
- e. chloric acid

Explanation: Nitrous acid is NOT on the strong acid list, the others are.

25. Consider the following protein chain with five acid/base residues labeled with their corresponding pK_a or pK_b .

What is the overall charge on the this protein chain at a physiological pH of 7.4?

- a. +1 b. 0 ●c. −1 d. −2
 - e. +2

Explanation: The two acid residues at 3.76 and 6.83 would both be deprotonated and have -1 charges. The acid at 9.22 would still be protonated and be neutral (0). You have to convert the pKb's to pKa's... you get 6.19 for one and it is not protonated and is still neutral at 0. The other is 9.15 and would be protonated at +1. Summing up you have

0 - 1 - 1 + 0 + 1 = -1 overall

After you are finished and have all your answers circled, go to the front of the room and then use the QR code show below to pull up the virtual answer page for your exam. Enter the appropriate info plus all your answers - click the SUBMIT button. Double check your choices on the next page. Once your are sure, click the submit button on that page to enter your answers. Make sure you get the confirmation screen (different background color!) and show it to the TA or proctor. After that, turn in your exam and scratch paper. You're free to leave after that.

https://mccord.cm.utexas.edu/iron