_	HW01 - Water, Acids & Bases I
Whic	ch of the following accurately explains a reason why water is so important for egy and chemistry? Water is a nonpolar molecule with a low molecular weight, causing it to be easily
0	vaporized at room temperature The polar hydrogen bonds of water cause it to be a stable solid at room temperature
0	Water is a very large organic molecule capable of dissolving many other organic molecules The polar hydrogen bonds of water cause it to be a liquid capable of dissolving many other polar solutes at room temperature
	ch of the following explains why water is a liquid at room temperature? Water has a relatively small molecular weight
0 0	Water is nonpolar Water is a large organic molecule Water contains hydrogen bonds
	oints ch of the following best classifies pure water and pure sodium chloride (NaCl)? Pure Water: nonpolar covalent molecule
0	NaCl: ionic compound Pure Water: nonpolar covalent molecule NaCl: polar covalent molecule
0	Pure Water: polar covalent molecule NaCl: ionic compound Pure Water: ionic compound
4 2 p	NaCl: ionic compound
Whic	ch of the following images represents a hydrated anion?
0	
5 4 p	oints
Whice O	ch ions are produced by a base in an aqueous solution? $SO_4^{2^-}$ CI^-
0	OH ⁻ Na ⁺
	oints ution is known to have a pH that is equal to 8.32. Which statement best describes
this s	the solution is slightly basic the solution is very acidic
0	the solution is very basic the solution is slightly acidic
	oints th of the following concentrations represents a basic solution at room temperature? [OH-] = 1.8 × 10 ⁻⁴ M
0 0 0	$[OH^{-}] = 1.8 \times 10^{-4} M$ $[OH^{-}] = 1.8 \times 10^{-11} M$ $[OH^{-}] = 1.8 \times 10^{-9} M$ $[OH^{-}] = 1 \times 10^{-7} M$
	oints th of the following is the most basic solution?
0 0 0	0.300 M Sr(OH) ₂ 1 x 10 ⁻⁹ M HCl 0.400 M LiOH 0.500 M HNO ₃
	oints
Solut Solut	tion A: pH = 1.54 tion B: pH = 7.00 tion C: pH = 9.42
	tion D: pH = 5.31 Solution A < Solution D < Solution B < Solution C Solution D < Solution A < Solution B < Solution C
000	Solution B < Solution D < Solution C Solution A < Solution C < Solution D
10 4 p	Solution C < Solution B < Solution D < Solution A
gives	15 M solution of each of the following acids is prepared. Which of these weak acids is the most acidic solution? $K_a = 6.2 \times 10^{-10}$
HCIC CH ₃ 0	D, $K_a = 3.5 \times 10^{-8}$ CH ₂ COOH, $K_a = 1.3 \times 10^{-5}$ D, $K_a = 2.0 \times 10^{-9}$
0 0	HCIO HBrO CH ₃ CH ₂ COOH
<u> </u>	HCN
The	oints K _b of hydroxylamine, NH ₂ OH, is 1.1 x 10 ⁻⁸ . Which of the following best classifies oxylammonium, NH ₃ OH ⁺ ?
0 0	weak acid weak base strong base
0	neutral salt strong acid
	oints t is [H ₃ O ⁺] when [OH] = 3.3 x 10 ⁻⁹ M?
0	$3.3 \times 10^{-5} M$ $3.3 \times 10^{-9} M$
0	$1.0 \times 10^{-7} M$ $3.0 \times 10^{-6} M$
	oints y increase of one pH unit means there are 10 times more H ⁺ ions in solution
0 0	there are 10 times fewer H ⁺ ions in solution the acidity is slightly increased
	there are 10 fewer H ⁺ ions in solution
	pH of lemon juice is approximately 2.40. At this pH, the hydronium (H_3O^+) ion entration is closest to which concentration? 5.6 $\times 10^{-4}$ M
0 0	$4.0 \times 10^{-3} M$ $0.38 M$
15 5 pc	2.5 x 10 ⁻¹² M
	t is the pH of 0.023 M HCl? Note: 2 sig-figs in a logarithmic scale would be X.XX. De your answer
Wha	oints t is the pH of a 0.0156 M NaOH solution? Report 3 digits after the decimal.
	Report 3 digits after the decimal. De your answer
A ca	oints n of Pepsi stored in a warehouse at room temperature has a pH equal to about 2.52. t is the H ⁺ concentration in a 12 oz can?
0	$3.0 \times 10^{-3} M$ $0.40 M$ $2.5 \times 10^{-2} M$
•	$2.5 \times 10^{-2} M$ $4.0 \times 10^{-4} M$ $6.1 \times 10^{-3} M$
	oints hydronium ion (H2O+) concentration in a solution with pH 10 is than the
	hydronium ion (H ₃ O ⁺) concentration in a solution with pH 10 is than the onium ion concentration in a solution with pH 13. 1000 times more 1000 times less
0 0	30 times more 3 times more
19 5 pa	300 times less
A 4.8	30 g sample of sodium hydroxide is dissolve into water to make a 1.5 gallon solution. t is the pH of this solution? 14.51
0	11.84 12.50 1.68
0	12.32
Cons	sider the following acid/base equation: $C_6H_5NH_2(aq) + H_2O(\ell) \rightarrow C_6H_5NH_3^+(aq) + OH^-(aq)$ is equation, water is behaving as a
0	weak acid neutral salt
0	weak base neutral conjugate
	oints ch of the following equations depicts a weak acid reaction? HCl(aq) + NaOH(aq) → NaCl(aq) + H ₂ O(ℓ)
0	$CaCO_3(s) \rightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$ $HNO_2(aq) + H_2O(\ell) \rightarrow NO_2^{-}(aq) + H_3O^{+}(aq)$
0	$HCI(aq) + H_2O(\ell) \rightarrow H_3O^+(aq) + CI^-(aq)$
	points the following equations depicts a salt dissolving into water? ${\sf CaCO_3(s)} \to {\sf CaCO_3(\ell)}$
0	HCl(aq) + H ₂ O(ℓ) \rightarrow H ₃ O ⁺ (aq) + Cl ⁻ (aq) HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H ₂ O(ℓ)
23 2 pa	$CaCO_3(s) \rightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$
0.15	moles of strong acid are added to 0.15 moles weak base in aqueous solution. How d you describe the resulting solution? A strongly basic solution
0	A weakly acidic salt A strongly acidic solution A weakly basic salt

24

5 points

33.7 mL

30.0 mL

36.3 mL

27.1 mL

24.8 mL

41.8 mL

Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCl) and sodium hydroxide (NaOH).

HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H₂O(ℓ) How many mL of 0.0362 M NaOH are needed to neutralize 30.0 mL of 0.0438 M HCl ?