Exam 1 Review

New Password

Acetic Acid

Weak

New Password

Hydrochloric Acid

Strong

Goals for today:

- Review acid and base fundamentals
- Acids and bases presented as chemical reactions
- Quantifying acids and bases
- As seen in the lab: titrations
- Common mistakes
- How to study and exam mindset

<u>Tips</u>

- Structure your notes and studying around the learning outcomes.
 - Class notes, chembook, homework
- Even for calculation problems, try to think about them conceptually.
- Practice, practice, practice

Common Mistakes

- Not appropriately converting calculations to what is asked in the question
- Stoichiometry counts, use the coefficients of your compound and given measurements properly.

Let's start with water:

- Water exhibits unique properties due to its polarity and ability to make hydrogen bonds.
 - It can dissolve other polar substances or ionic compounds by breaking the solutes intermolecular bonds and create new H₂O - solute IMF bonds.
- At room temperature, H₂O spontaneously has moments of dissociation:

$$H_2O_{(1)} \hookrightarrow H^+_{(aq)} + OH^-_{(aq)}$$
 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$ Therefore, the H^+ and OH^- concentrations are equal to 1.0×10^{-7} for a neutral solution at room temperature.

- Water also acts as an important solvent as it can dissolve the majority of salts and polar compounds (remember how like dissolves like)
 - When we start adding "stuff" to water, we call this acid-base chemistry.

Acid Base Mindset

- The study of acids and bases revolves around understanding the chemical environment of aqueous solutions associated with hydronium and hydroxide concentrations.
- How do we talk about acids and bases?
 - Quantitatively:

0.0001 M

- The standard units of measurement for acids and bases are [H+], [OH-], pH, and pOH.

$$pOH = -log[OH-]$$

- Qualitatively:
 - For a <u>neutral</u> solution, pH = 7
 - Acidic solutions have pH < 7
 - Basic solutions have pH > 7

PH Calculations

strong acid

2. strong base

$$\begin{array}{c} NaOH_{(a2)} \rightarrow Na^{+} + OH^{-} \\ Ca(OH)_{L} \rightarrow Ca^{2+} + 2OH^{-} (a2) \end{array}$$

weak acid.

$$HA_{(2)} + H_{20}_{(1)} \rightleftharpoons H_{30}^{+}_{(22)} + A_{(22)}^{-}_{(22)}$$

weak base

4. Weak base
$$B_{(1)} + H_2 \delta_{(1)} \approx BH_{(2)}^+ + \delta_{(2)}^+$$

Acid: *Leaves a proton* Base:

$$K_{\mathbf{A}} = \frac{[H_{\mathbf{A}}^{\mathbf{A}}][A]}{[HA]} \times \frac{\mathbf{A}}{\mathbf{A}} \times \frac$$

$$K'' = \frac{[a]}{[b]} = \frac{x_1}{x_2} \times = [ad-]$$

Quantifying Weak Acids and Bases

Important Reminder: K_a will get you [H⁺], K_b will get you [OH⁻]. Therefore, K_a corresponds to a weak acid reaction and K_b corresponds to a weak base reaction.

$$HA \rightleftharpoons H^{+} + A^{-} \longrightarrow K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \xrightarrow{\text{(Solve using approximation or quadratic)}} pH = -\log[H^{+}]$$

$$B \rightleftharpoons BH^{+} + OH^{-} \longrightarrow K_{b} = \frac{[OH^{-}][BH^{+}]}{[B]} \longrightarrow pOH = -\log[OH^{-}]$$

$$|Shore \times K_{b}| \ge 1000$$

It is far to say that most questions will use the approximations:

$$[H^+] = \sqrt{C_{HA} \cdot K_a} \qquad [OH^-] = \sqrt{C_B \cdot K_b}$$

Don't forget that at any time you can convert between different

$$K_{w} = 1 \cdot 10^{-14} = [H^{+}][OH^{-}]$$

$$K_{w} = K_{a}K_{b}$$

Weak Acid Calculations - Percent Ionization

- Percent ionization is an important way of depicting electrolyte strength.
 - K_a is, of course, the more formal way of depicting acid/base strength because % ionization depends on the initial concentration while K_a can represent any concentration of acid.
 - The higher a Ka value, the more the acid dissociates. (Same for K_b but it is base dissociation).

Example: What is the pH of a 0.12 M solution of urea $((NH_2)_2CO)$?

$$K_{b} = 1.5 \times 10^{-14}$$

$$\frac{B}{0.12} + \frac{1}{0} = \frac{BH}{0} + \frac{OH}{0}$$

$$\frac{B}{0.12} + \frac{1}{0} = \frac{X^{2}}{0.12}$$

$$\frac{A}{0.12} + \frac{A}{0} = \frac{X^{2}}{0.12}$$

Neutralization Reactions

- The product of a neutralization reaction is a salt. In acid/base chemistry, your salt can be neutral, acidic, or basic depending on the reaction.
- 1. GENERIC REACTION (very helpful):

 Acid(aq) + Base(aq)

 ⇒ Salt(aq) + Water(l)
- 2. Strong Acid, Strong Base: results in a neutral salt HCl(aq) + NaOH(aq) ⇒ NaCl(aq) + H₂O(l)
- 3. Strong Acid to weak base: results in an acidic salt

 HCl(aq) + NH₃(aq)

 ⇒ NH₄Cl (aq) + H₂O(l)*

Titrations

rant

- 1. Equivalence Point
 - Full neutralization:moles titrant = moles analyte
- 2. End point
 - where your indicator changes color
 - OBSERVATIONAL depiction of equivalence point
- end point ≠ equivalence point

Using a titration to find an unknown variable:

During the experiment you add increments of acid/base (titrant) to a solution of base/acid (analyte) until the perfect stoichiometric match is made:

$$M_{\text{acid}} = M_{\text{base}}$$

Example: It takes 28.90 mL of HCl_to completely neutralize 50.00 mL of NaOH. What is the NaOH concentration in the initial solution (analyte)?

$$M_{a}V_{a} = M_{b}V_{b}$$

$$(0.1M)(0.0289L) = \times (0.05L)$$


```
How to prepare for the exam in the next two nights:

(Did not get to everything in review so:)
 * Making the cheat sheet
* Rewrite Noter + Redo HW
    Ly Given, Solution?
0.7 M HCI pH?
* 0: chembook, lecture notes,
             hw, extra practice
         optional: gchem - acid bas - Additional
```


Questions?

