

5 points

How would you classify the bond in O_2 ?

- Ο covalent double bond
- Ο covalent single bond
- Ο ionic bond
- Ο covalent triple bond

5 points

When drawing the Lewis structure for ammonia (NH₃), we get how many shared (S), needed (N), and available (A) electrons, and how many lone pairs (LP)?

Ο S = 6, N = 14, A = 8, LP = 1

- Ο S = 3, N = 14, A = 8, LP = 1
- Ο S = 6, N = 8, A = 14, LP = 1
- \bigcirc S = 6, N = 14, A = 8, LP = 0

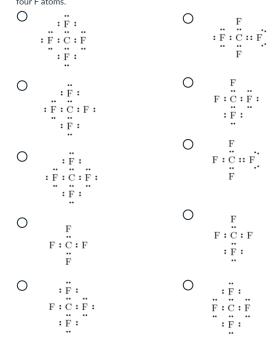
5 p	oints
How	many lone pairs of electrons are on nitrogen in NF_3 ?
Ο	zero
Ο	three

ero

hree

- 0 one
- Ο two

5 5 points


What are the values of S, N, and							
	S = shared electrons N = needed electrons A = available electrons						
	0	S = 20 N = 44 A = 24					
	0	S = 16 N = 40 A = 24					
	0	S = 24 N = 20 A = 44					
	0	S = 44					

N = 20 A = 24

6 5 points

Select the correct Lewis Dot structure for the molecule containing one C and four F atoms.

for CH₃COCH₃?

5 points

Which of the following compounds contains exactly one unshared pair of valence electrons?

0	SiH ₄
0	H_2S
Ο	C_2H_4

- O PH₃
- •

8 5 points

Draw the Lewis Structure for CH_2O . How many lone pairs are found on the molecule?

0	1				
0	2				
0	4				
0	0				

9 5 points

Which of the following describes the C-C bond in acetylene (ethyne, C₂H₂)?

- O single bond
- O double bond
- O triple bond
- O 1.5 bond in resonance

10 5 points

Resonance is a concept that describes the bonding in molecules...

- O by asserting that double or triple bonds 'flip' or resonate between two locations in the molecule.
- O where there is more than one choice of location for a double or triple bond as deduced from Lewis dot structures. The true bonding is the average over all possible multiple bond locations.
- O by asserting that electrons in a double bond can delocalize (spill over) onto adjacent single bonds to make a bond and a half.

11 5 points

The carbonate ion (CO_3^{2-}) has how many resonance configurations?

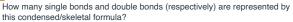
- O 4
- O 2
- O The carbonate ion does not exhibit resonance.
- О 3

2 5 points

When measuring a carbon-carbon bond in benzene, a compound that exhibits resonance, you would find that...

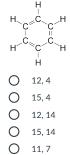
O 50% of the time we would measure a single bond and 50% of the time we would measure a double bond

O the bond strength of each bonding region in resonance is close to the average of a single and double bond.

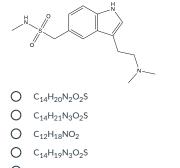

13 5 point

Calculate the formal charge on N in the molecule NH3.

- О з
- O 2
- 0 0
- O 1



 $H_2C =$



Note: that weird hexagon with a circle in it is seen all the time if you google certain organic molecules such as pharmaceuticals. It represents the resonance within a phenyl ring, similar to benzene (shown below):

15 5 points

The following molecule is a migraine medication that acts as a vasoconstrictor. What is the molecular formula for this molecule?

O C₁₃H₁₉N₂O₂S

The following is the skeletal structure for a compound.

What is the molecular formula of this structure?

- O C₈H₁₈
- O C₈H₂₄
- O C₈H₁₆
- O C₈H₈

5 points

This is the condensed structural formula for the active ingredient in the over-thecounter medication Tylenol.

What is the empirical formula for this compound?

- O C₈H₉NO₂
- O C₈H₈NO
- O C₈H₅NO₂

O C₈H₁₁NO₂

18 5 points

Consider the Lewis Structures of CO_2 and CH_3OH . Compared to the carbonoxygen bonds in CO₂, the carbon-oxygen bond in CH₃OH are...

- O weaker and longer
- Ο stronger and longer
- weaker and shorter Ο
- Ο stronger and shorter

19 5 points

Which is the correct order of increasing bond strength?

- O double, triple, single
- O double, single, triple
- Ο single, double, triple
- Ο triple, double, single

20 5 points

Draw the Lewis structures for O_2 and O_3 . Why does it take more energy to break apart the bond in O₂?

- Ο The bond length in O_2 is greater than the bond length in O_3
- Ο The bond order in O_3 is greater than the bond order in O_2
- \bigcirc The bond order in O_2 is greater than the bond order in O_3