HW03 - Radiation & Atomic Theory

1 point Frequency is the distance between a peak in one wave to the trough in the next wave. the number of waves passing a fixed point in one second. the distance between successive peaks in a wave. one half the height of the wave.	1 point If a photon's wavelength is 663 μm, what is its energy? $O 4.40 \times 10^{-43} \text{ J}$ $O 3.00 \times 10^{-25} \text{ J}$ $O 3.00 \times 10^{-22} \text{ J}$ $0 4.40 \times 10^{-46} \text{ J}$
1 point Wavelength is one-half of the height of a wave. the distance between a peak of one wave and the trough of the next. the number of waves passing a fixed point in one second. the distance between successive peaks in a wave.	1 point A photon has a frequency of 223 MHz. What is the energy of this photon? 1.48 × 10 ⁻²⁵ J 8.91 × 10 ⁻²⁸ J 8.91 × 10 ⁻²² J 1.48 × 10 ⁻³¹ J
1 point As the wavelength of a light wave gets longer, frequency and energy remain unchanged increase decrease	9 1 point What is the frequency of yellow light with a wavelength of 580 nm? $O = 5.80 \times 10^{10} \text{ s}^{-1}$ $O = 1.80 \times 10^{-7} \text{ s}^{-1}$
1 point Which of the following equations directly solves for energy using wavelength? $E = h \lambda / v$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \bigcirc E = hc/\lambda \bigcirc E = h\lambda \bigcirc E = h\nu/\lambda $	10 1 point Sodium vapor lamps, used for public lighting, emit yellow light of a wavelength of 570 nm. How much energy is emitted by an excited sodium atom when it generates a photon? O 3.5 x 10 ⁻¹⁹ J
1 point FM radio stations correspond to the frequency of the channel in MHz. If you want to listen to a radio station that has a frequency equal to 1.015 x 10 ⁸ Hz, you should tune your radio to 1.015	O 2.8 x 10 ⁻¹⁹ J O 2.8 x 10 ⁻²⁰ J O 3.5 x 10 ⁻²⁸ J
101510.15101.5	11 1 point Consider the sodium vapor lamps described in the previous question. How much energy is emitted by 45.8 mg of sodium atoms emitting light at this wavelength? Assume each sodium atom emits one photon.
1 point Microwaves, such as those used for radar and to heat food in a microwave oven, have wavelengths just greater than about 3 mm. What is the corresponding frequency of radiation with a 13.4 mm wavelength? O 6.82×10^{10} Hz	O $2.0 \times 10^{21} \text{ J}$ O 420 J O $4.2 \times 10^5 \text{ J}$ O $2.0 \times 10^{-3} \text{ J}$
O 7.52 x 10 ¹⁰ Hz O 2.24 x 10 ¹⁰ Hz O 4.81 x 10 ¹⁰ Hz	12 1 point It takes light with a wavelength of 212 nm to break the N-H bond in ammonia. What energy is required per photon to break this bond? What is the N-H bond strength in terms of kJ per mole O 6.61 x 10 ⁻²² kJ/photon; 398 kJ/mol O 9.38 x 10 ⁻²² kJ/photon; 565 kJ/mol
	 9.38 x 10⁻²² kJ/photon; 565,000 kJ/mol 6.61 x 10⁻²² kJ/photon; 0.398 kJ/mol

13 1 point E = hv	18 1 point
$c = \lambda v$	Which of the following is the most energetic form of UV light?
VVV WMM	O UV-C
Radio Microwave Infra-Red Long Wavelength, Low Energy Short Wavelength, High Energy	O UV-B
Low Frequency High Frequency	O UV-A
Increasing Energy (E), Frequency (v)	O UV-A, UV-B, and UV-C are equally energetic
Shortening Wavelength (λ) Rank the following radiation types from shortest to longest wavelength:	<u> </u>
UV, X-Ray, Red light, Green light	19 1 point
X-ray, UV, Green light, Red light	How many total s electrons does P (atomic number 15) possess?
Green light, X-Ray, Red light, UV	O 5
X-Ray, Green light, Red light, UV	O 6
Red light, Green light, UV, X-Ray	O 4
	<u> </u>
14 1 point	<u> </u>
Which of the following statements is true regarding the visible spectrum:	20 1 point
I. Red light has the longest wavelength in the visible spectrum	Which of the following statements are consistent with modern atomic theory? Multiple answers
II. Yellow light has a greater velocity than orange light III. Violet light has the highest velocity in the visible spectrum	may apply.
IV. Blue light has a higher frequency than green light	The vast majority of mass exists in the nucleus of an atom, but the radius of the nucleus is only about minuscule fraction of the overall atomic radius
O I, II, and IV only	Electrons exist in discrete, quantifiable energy levels.
O II, III, and IV only	An electron that has zero energy when it is closest to the nucleus
O I and IV only	The solutions to the Schrödinger Equation are wavefunctions that describe the energy
O I only	and position of electrons in an atom.
O I, II, III, and IV	
O I, III, and IV only	21 1 point
O IV only	A common reference point in atomic theory is the energy of a free electron. A "free" electron is one that is free of all positive/negative attractions and repulsions. It is effectively an infinite distance away from all things. What is the value of this reference energy level of a free electron?
45 4 maint	O -∞J
15 1 point How would you describe the most likely effect of infra-red radiation on matter?	O +∞ J
excitation	O (zero) J
O vibration	
	O 6.022×10 ²³ J
O rotation	
O ionization	22 1 point
	Consider attractive forces within matter between particles (any particles really). As those attractions get stronger and stronger and the matter responds, the energy level of that matter
16 1 point	will decrease accordingly
How would you describe the most likely effect of visible light on a molecule?	stay approximately the same
O molecular ionization	
O molecular vibration	will increase accordingly
O molecular rotation	_
O electron excitation	23 1 point
	Which of the following sets of quantum numbers is not possible?
17 1 point	$n = 3, l = 2, m_l = 1, m_s = 1/2$
DNA, generally considered a very stable organic polymer, is first damaged at which region of t	he $n = 2, l = 0, m_l = 0, m_s = -1/2$
electromagnetic spectrum?	O $n = 5, l = 3, m_l = 3, m_s = -1/2$
Visible light	$n = 3, I = 4, m_I = -3, m_S = 1/2$
UV region	
O IR region	
O Radio waves	

1 point Which of the following is a possible quantum number set for an electron in a 4d orbital? $n = 2, \ \ell = 4, \ m_\ell = 2, \ m_s = -\frac{1}{2}$ $n = 4, \ \ell = 2, \ m_\ell = -1, \ m_s = \frac{1}{2}$ $n = 4, \ \ell = 3, \ m_\ell = 0, \ m_s = \frac{1}{2}$ $n = 4, \ \ell = 3, \ m_\ell = 3, \ m_s = \frac{1}{2}$	$\begin{array}{c} \textbf{30} & \textbf{1 point} \\ & \textbf{What is the electronic configuration of a selenium atom (Se)?} \\ & \bigcirc & [Kr]4s^24d^{10}4p^4 \\ & \bigcirc & [Ar]4s^23d^{10}4p^4 \\ & \bigcirc & [Ar]4s^24d^{10}4p^4 \\ & \bigcirc & [Kr]4s^24p^{14}4d^{10}4p^4 \\ & \bigcirc & [Kr]4s^23d^{10}4p^4 \\ & \bigcirc & [Kr]4s^23d^{10}4p^4 \end{array}$
1 point An electron is found in a 6f orbital. What is the value of the angular momentum quantum number (\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$ \begin{array}{c} \textbf{31} & 1 \text{point} \\ \\ \textbf{What is the electron configuration of the chloride anion, CP} \\ \hline \textbf{O} & 1 \text{s}^2 2 \text{s}^2 2 \text{p}^6 \\ \hline \textbf{O} & 1 \text{s}^2 2 \text{s}^2 2 \text{p}^6 3 \text{s}^2 3 \text{p}^4 \\ \hline \textbf{O} & 1 \text{s}^2 2 \text{s}^2 2 \text{p}^6 3 \text{s}^2 3 \text{p}^5 \\ \hline \textbf{O} & 1 \text{s}^2 2 \text{s}^2 2 \text{p}^6 3 \text{s}^2 3 \text{p}^6 \\ \hline \end{array} $
1 point How many unique quantum number sets are possible for a 3p electron in an argon atom?	A neutral atom has a ground state electronic configuration designated 1s ² 2s ² 2p ² . Select the statement that best describes this atom. The atom has electrons in four different, separate orbitals. The atom contains 6 protons.
1 point Which of the following is not a possible quantum number set? On = 3, $\ell = 0$, $m_{\ell} = 0$, $m_{s} = \frac{1}{2}$ On = 2, $\ell = 1$, $m_{\ell} = 0$, $m_{s} = \frac{1}{2}$	The element has atomic number 6. The atom is carbon. All are true. The atom has 2 unpaired electrons.
$ \bigcap_{n=3, \ \ell=2, \ m_{\ell}=-3, \ m_{s}=-\frac{3}{2}} n_{s} = -\frac{3}{2} $ $ \bigcap_{n=4, \ \ell=2, \ m_{\ell}=-1, \ m_{s}=-\frac{3}{2}} n_{s} = -\frac{3}{2} $	1 point The electron configuration for the most common sodium ion is isoelectronic with
1 point An electron orbital has a round, spherical shape (s-orbital). Its n value equals 3. What is a possible quantum number set for this electron orbital? $n = 5, l = 3, ml = 0, ms = 1/2$ $n = 3, l = 1, ml = 0, ms = 1/2$ $n = 2, l = 3, ml = 0, ms = 1/2$ $n = 3, l = 0, ml = 0, ms = 1/2$	argon krypton magnesium neon helium
1 point The electron configuration for the Mn atom is $O = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^5$ $O = 1s^2 2s^2 2p^6 3s^2 3p^3$	

O 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁵ O 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷