HW14 - 2nd Law and Free Energy

1 1 point

- In order for an endothermic reaction to be spontaneous,
- endothermic reactions are never spontaneous.
- the entropy increase in the system must equal the entropy decrease in the surroundings.
 - the entropy increase in the system must be greater than the entropy decrease in the
- surroundings.
- nothing special is required; they are always spontaneous.
- heat must be supplied to the system.

2 1 point

Which one of the following reactions has a positive entropy change?

- $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$
- $H_2O(g) \longrightarrow H_2O(I)$
- $2NH_4NO_3(s) \longrightarrow 2N_2(g) + 4H_2O(g) + O_2(g)$
- $= \mathsf{BF}_3(g) + \mathsf{NH}_3(g) \longrightarrow \mathsf{F}_3\mathsf{BNH}_3(g)$
- $\bigcirc N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

1 point

Consider the following processes. Which entropy will increase as the process proceeds from left to right? Select all of the correct answers.

- $H_2O(I) \rightarrow H_2O(s)$
- $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- NaCl (s) \rightarrow Na⁺ (aq) + Cl⁻ (aq)

1 point

What are the values of ΔS for the water, the surroundings, and the universe for the evaporation of water from an open pan at 25°C?

- positive, negative, zero
- negative, negative, negative
- positive, negative, positive
- positive, negative, negative

5 1 point

True/False: For a given transfer of energy, a greater change in entropy occurs when the

temperature is high.

False, because only heat flow affects the change in entropy, not temperature.

- True
- False, because as temperature decreases there is a greater change in entropy.

1 point

Which of the following lists phases in order of increasing entropy?

- solid, gas, liquid
- solid, liquid, gas
- liquid, solid, gas
- liquid, gas, solid
- gas, liquid, solid

1 point

 H_2 burning in O_2 to form H_2O (I) is an example of a system where the entropy of the universe decreases.

- True
- H_2 is not flammable.
- False

1 point 8

Consider the following processes of ideal gases. Which of these processes leads to an increase in entropy? Select all of the correct answers.

- Nitrogen gas is compressed isothermally to one half its original volume.
- A glass of water loses 100 J of energy reversibly at 30°C.
- The pressure of one mole of oxygen gas is allowed to double isothermally.
- Carbon dioxide is allowed to expand isothermally to 10 times its original volume.

1 point

- Which of the following chemical reactions exhibit a positive ΔS ? Select all of the correct answers. $2H_2O\left(l\right)+O_2(g)\rightarrow H_2O_2(l)$
 - $2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$
 - $H_2O(g) \rightarrow H_2O(I)$
 - $3O_2(g) \rightarrow 2O_3(g)$

10 1 point

The temperature of 2.00 mol Ne(g) is increased from 25°C to 200°C at constant pressure. Assuming the heat capacity of Ne is 20.8 J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior.

- +7.68 J/K
- -19.2 J/K
- -7.68 J/K
- +19.2 J/K

11 1 point

The enthalpy of fusion of H_2O (s) at its normal melting point is 6.01 kJ/mol. What is the entropy change for freezing 1 mole of water at this temperature?

- +22.0 J/mol·K
- -22.0 J/mol·K
- -20.2 J/mol·K
- +20.2 J/mol·K

12 1 point

Calculate the standard reaction entropy for the decomposition of 1 mol calcite to carbon dioxide gas and solid calcium oxide at 25°C. $CaCO_3(s) \rightarrow CO_2(g) + CaO(s)$

Cucc 3 (3)	202(6)	
Substance	S° (J/mol∙K)	
CaO (s)	39.75	
CO ₂ (g)	213.74	
CaCO ₃ (s)	92.9	
-266.9 J/mol·K		
346.4	1 J/mol⋅K	

- 160.6 J/mol·K
- -160.6 J/mol·K

1 point 13

True/False: All entropies of fusion are negative.

- True fusion leads to more microstates (degrees of freedom).
- False fusion leads to more microstates (degrees of freedom).
- True fusion leads to less microstates (degrees of freedom).
- False fusion leads to less microstates (degrees of freedom).

14 1 point

A system releases 900 J of heat to the surroundings (27°C). What is Δ S of the surroundings? -3 J/K 33.3 J/K 3 J/K

-33.3 J/K

1 point 15

When a sugar cube dissolves in a cup of coffee (an endothermic process), entropy changes of the sugar plus water, the surroundings, and the universe respectively are...

- negative, negative, negative
- positive, negative, negative
- negative, positive, positive
- positive, positive, positive
- None of these are correct.

16 1 point

- Which substance has the lower molar entropy?
- Kr (g) at 298 K and 1.00 atm
- There is no way to know.
- Ne (g) at 298 K and 1.00 atm
- They are both the same.

17 1 point

Calculate the standard entropy of vaporization of ethanol at its boiling point, 352 K. The standard molar enthalpy of vaporization of ethanol at its boiling point is 40.5 kJ/mol.

- +40.5 J/mol·K
- +115 J/mol·K
- -40.5 J/mol·K
- -115 J/mol·K

18 1 point

Consider the following vaporization reaction.

 $Br_2(I) \rightarrow Br_2(g)$ At a certain pressure, ΔH° = 34 kJ/mol and ΔS° = 0.098 kJ/mol·K. What is the lowest temperature at which this process is spontaneous?

- 74 K
- -347 K
- 347 K
- 0.00288 K

\bigcirc	Fe ₃ O ₄ (s) + 2C (s,	graphite) $\rightarrow 20$	$CO_2(g) +$	3Fe (s)	, Brahinne.	
()	670°C	0	- 2 (0)			
\bigcirc	Magenetite cannot be redu	ced by carbon a	t anv tem	nnerature		
\bigcirc	535°C		t any ten	iperature	•	
\bigcirc	333 C					
\bigcirc	707 C					
\bigcirc	Magnetite will be reduced i	by carbon at any	/ tempera	ature.		
1 p	oint					
Wha	t is the entropy change for th	e following che	mical rea	ction at a	t 25°C?	
C	$_{2}H_{2}(g) + 2H_{2}(g) \longrightarrow$	C ₂ H ₆ (g)	S	Substance	S° (J/K∙mol)	ΔH _f ° (kJ/n
				$C_2H_2(g)$	200.94	226.73
			H ا	H ₂ (g)	130.68	0
			C	2 ₂ H ₆ (g)	229.6	-84.68
\bigcirc	-102.0 J/mol·K					
\bigcirc	290.0 J/mol·K					
\bigcirc	-2327 1/mol.K					
\bigcirc	150 2 1/mal 1/					
\bigcirc	тэт.9 ј/ШОІ•К					
1 p	oint					
Wha	it is the enthalpy change for t	he chemical rea	ction in q	uestion 2	0?	
\bigcirc	311.41 kJ/mol					
\bigcirc	-311.41 kJ/mol					
\bigcirc	-142.05 kJ/mol					
\bigcirc	-538.14 kJ/mol					
\bigcirc	69,068 kJ/mol				Cond the steer	
1 p Assu whic	oint Iming ΔH° _{rxn} and ΔS° _{rxn} are u th ΔG° is zero for the chemic -1338 K 1338 K	naffected by ter al reaction in q	nperature uestion 2	e changes :0.	, find the ten	nperature a
1 p Assu whice	oint Iming ΔH° _{rxn} and ΔS° _{rxn} are us th ΔG° is zero for the chemic -1338 K 1338 K 1.338 K	naffected by ter al reaction in q	nperature uestion 2	e changes :0.	, find the ten	nperature a
1 p Assu whice	oint Iming ΔH° _{rxn} and ΔS° _{rxn} are us th ΔG° is zero for the chemic -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any	naffected by ter al reaction in qu possible temper	nperature uestion 2 rature.	e changes :0.	, find the ten	nperature a
1 p Assu whice	oint Iming ΔH° _{rxn} and ΔS° _{rxn} are us th ΔG° is zero for the chemic -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any	naffected by ter al reaction in que	nperature uestion 2 rature.	e changes 0.	, find the ten	nperature a
1 p Assu whice 0 0 0 0 1 p Consof 7.	oint Iming ΔH ^o _{rxn} and ΔS ^o _{rxn} are us th ΔG ^o is zero for the chemic -1338 K 1338 K 1.338 K ΔG ^o will not equal 0 at any oint sider the following unbalance 2 moles of Al ₂ O ₃ (s) at 298K?	naffected by ter al reaction in q possible temper	nperature uestion 2 rature. at is the s	e changes 0. standard f	ree energy fo	nperature a or the reac
1 p Assu whice 0 1 p Consof 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are use th ΔG° is zero for the chemic -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalance 2 moles of $Al_2O_3(s)$ at 298K? $O_3(s) + CO(g) \longrightarrow A$	naffected by ter al reaction in q possible temper d equation. What I(s) + CO ₂ (s	nperature uestion 2 rature. at is the s	e changes 0. standard f ubstance	ree energy fo ΔH° _f (kJ/mol -1676.0	or the reac S° (J/mol 50.92
1 p Assu whice 0 0 1 p Consof 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are use th ΔG° is zero for the chemic -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalance 2 moles of $Al_2O_3(s)$ at 298K? $O_3(s) + CO(g) \longrightarrow A$	haffected by ter cal reaction in que possible temper d equation. What $d(s) + CO_2(s)$	nperature uestion 2 rature. at is the s g) Al	e changes 0. standard f ubstance I ₂ O ₃ (s)	ree energy for ΔH^{o}_{f} (kJ/mol) -1676.0 -110.5	or the reac S° (J/mol 50.92 197.6
1 p Assu whice 0 1 p Cons of 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are use th ΔG° is zero for the chemice -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalance 2 moles of $Al_2O_3(s)$ at 298K? $O_3(s) + CO(g) \longrightarrow A$	haffected by ter cal reaction in q possible temper d equation. What ll(s) + CO ₂ (s	nperature uestion 2 rature. at is the s g) Al	e changes 20. standard f ubstance I ₂ O ₃ (s) O (g) I (s)	ree energy fo ΔH° _f (kJ/mol -1676.0 -110.5 0.0	or the reac S° (J/mol 50.92 197.6 28.3
1 p Assu whice 0 1 p Cons of 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are use th ΔG° is zero for the chemice -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced 2 moles of $Al_2O_3(s)$ at 298K? $O_3(s) + CO(g) \longrightarrow A$	haffected by ter cal reaction in q possible temper d equation. What I(s) + CO ₂ (s	nperature uestion 2 rature. at is the s g) Al Cu Al Cu	e changes 0. standard f ubstance $ _2O_3(s) $ O (g) I (s) O ₂ (g)	ree energy fo ΔH° _f (kJ/mol -1676.0 -110.5 0.0 -393.5	or the reac S° (J/mol 50.92 197.6 28.3 213.6
1 p Assu whice 0 1 p Consof 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are use th ΔG° is zero for the chemica- 1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced 2 moles of $Al_2O_3(s)$ at 298K? $O_3(s) + CO(g) \longrightarrow A$	naffected by ter cal reaction in q possible temper d equation. What II(s) + CO ₂ (s	nperature uestion 2 rature. at is the s g) Al Cu Al Cu	e changes 0. standard f ubstance $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ree energy fo ΔH° _f (kJ/mol -1676.0 -110.5 0.0 -393.5	or the reac S° (J/mol 50.92 197.6 28.3 213.6
1 p Assu whice 0 1 p Consof 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units th ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced 2 moles of $Al_2O_3(s)$ at 298K? $O_3(s) + CO(g) \longrightarrow A$	haffected by ter cal reaction in q possible temper d equation. What $I(s) + CO_2(s)$	nperature uestion 2 rature. at is the s g) Al Cu Al Cu	e changes 0. standard f ubstance $ _2O_3(s) $ O(g) I(s) $O_2(g) $	ree energy fo ΔH° _f (kJ/mol -1676.0 -110.5 0.0 -393.5	or the reac S° (J/mol 50.92 197.6 28.3 213.6
1 p Assu whice 0 1 p Consof 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced $2 \text{ moles of Al}_2O_3(s) \text{ at } 298\text{K}?$ $O_3(s) + CO(g) \longrightarrow A^{\circ}$	haffected by ter cal reaction in q possible temper d equation. What $I(s) + CO_2(s)$	nperature uestion 2 rature. at is the s g) Al Cu Al Cu	e changes 0. standard f ubstance $ _2O_3(s) $ O(g) I(s) $O_2(g)$ -15,000	Free energy for ΔH^{o}_{f} (kJ/mol) -1676.0 -110.5 0.0 -393.5 0 kJ	or the reac) S° (J/mol 50.92 197.6 28.3 213.6
1 p Assu whice	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced $2 \text{ moles of } Al_2O_3(s) \text{ at } 298\text{ K}?$ $O_3(s) + CO(g) \longrightarrow A^{\circ}$	haffected by ter cal reaction in q possible temper d equation. What $I(s) + CO_2(s)$	nperature uestion 2 rature. at is the s g) Al Cu Al Cu	e changes 0. standard f ubstance $I_2O_3(s)$ O(g) I(s) $O_2(g)$ -15,000 5800 k.	Free energy for ΔH^{o}_{f} (kJ/mol) -1676.0 -110.5 0.0 -393.5 0 kJ	or the reac) S° (J/mol 50.92 197.6 28.3 213.6 -1.1 x 10 810 kJ
1 p Assu whice 0 1 p Cons of 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced 2 moles of $Al_2O_3(s)$ at 298K? $O_3(s) + CO(g) \longrightarrow A$	haffected by ter cal reaction in q possible temper d equation. What $I(s) + CO_2(s)$	nperature uestion 2 rature.	e changes 20. standard f ubstance $l_2O_3(s)$ O(g) I(s) $O_2(g)$ -15,000 5800 k.	Free energy for ΔH°_{f} (kJ/mol) -1676.0 -110.5 0.0 -393.5 0 kJ	or the reac) S° (J/mol 50.92 197.6 28.3 213.6 -1.1 x 10 810 kJ
1 p Assu whice 0 1 p Consof 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced $2 \text{ moles of } Al_2O_3(s) \text{ at } 298\text{ K}?$ $O_3(s) + CO(g) \longrightarrow A^{\circ}$ $O_3(s) + CO(g) \longrightarrow A^{\circ}$	haffected by ter cal reaction in q possible temper d equation. What $I(s) + CO_2(s)$	nperature uestion 2 rature.	e changes 0. standard f ubstance $l_2O_3(s)$ O(g) I(s) $O_2(g)$ -15,000 5800 k.	Free energy for ΔH°_{f} (kJ/mol) -1676.0 -110.5 0.0 -393.5 0 kJ	or the reac) S° (J/mol 50.92 197.6 28.3 213.6 -1.1 x 10 810 kJ
1 p Assu whice 0 1 p Consof 7. Al ₂ C	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units the ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced 2 moles of $Al_2O_3(s)$ at 298K? $D_3(s) + CO(g) \longrightarrow A$ oint ulate the normal boiling point apprization of chloroform is 0	of chloroform $\frac{1}{3}$	at is the s at is the s g) Al	e changes 0. standard f ubstance $l_2O_3(s)$ O(g) I(s) $O_2(g)$ -15,000 5800 k. t the stan	ree energy for ΔH°_{f} (kJ/mol) -1676.0 -110.5 0.0 -393.5 0 kJ	or the reac) S° (J/mol 50.92 197.6 28.3 213.6 -1.1 x 10 810 kJ
1 p Assu whice 0 1 p Consof 7.	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced $2 \text{ moles of Al}_2O_3(s) \text{ at } 298 \text{ K}?$ $O_3(s) + CO(g) \longrightarrow A^{\circ}$ $O_3(s) + CO(g) \longrightarrow A^{\circ}$ oint ulate the normal boiling point aporization of chloroform is 9- 405 K	of chloroform g	nperature uestion 2 rature. at is the s g) Al Cu Al Cu Suppose that 31.4 kJ/	e changes 0. standard f ubstance $\left _{2O_{3}(s)}\right $ O(g) I(s) $O_{2}(g)$ -15,000 5800 k. the stan mol, respe	ree energy for $\Delta H^{\circ}_{f} (kJ/mol)$ -1676.0 -110.5 0.0 -393.5 0 kJ J dard entropy ectively.	or the reac S° (J/mol- 50.92 197.6 28.3 213.6 -1.1 x 10 810 kJ
1 p Assu whice 0 1 p Consof 7. Al ₂ C	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units the ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced 2 moles of $Al_2O_3(s)$ at 298K? $D_3(s) + CO(g) \longrightarrow A^{\circ}$ $D_3(s) + CO(g) \longrightarrow A^{\circ}$ int ulate the normal boiling point aporization of chloroform is 9 405 K 335 K	haffected by ter cal reaction in q possible temper d equation. What $I(s) + CO_2(s)$ of chloroform s 3.7 J/mol·K and	nperature uestion 2 rature. at is the s g) Al Cu Al Cu Al Cu Suren tha 31.4 kJ/	e changes 0. standard f ubstance $l_2O_3(s)$ O(g) I(s) $O_2(g)$ -15,000 5800 k. t the stan mol, respe	ree energy for ΔH°_{f} (kJ/mol) -1676.0 -110.5 0.0 -393.5 0 kJ	or the reac S° (J/mol- 50.92 197.6 28.3 213.6 -1.1 x 10 810 kJ
1 p Assu whice 0 1 p Consof 7. Al ₂ C	oint uning ΔH°_{rxn} and ΔS°_{rxn} are units ΔG° is zero for the chemical -1338 K 1338 K 1.338 K ΔG° will not equal 0 at any oint sider the following unbalanced $2 \text{ moles of } Al_2O_3(s) \text{ at } 298\text{ K}?$ $D_3(s) + CO(g) \longrightarrow A^{\circ}$ $D_3(s) + CO(g) \longrightarrow A^{\circ}$ 1000000000000000000000000000000000000	haffected by ter cal reaction in q possible temper d equation. What $I(s) + CO_2(s)$ of chloroform s 3.7 J/mol·K and	nperature uestion 2 rature. at is the s g) Al Cu Al Cu Siven tha 31.4 kJ/	e changes 0. standard f ubstance $l_2O_3(s)$ O(g) I(s) $O_2(g)$ -15,000 5800 k. t the stan mol, respectively.	ree energy for ΔH°_{f} (kJ/mol) -1676.0 -110.5 0.0 -393.5 0 kJ J dard entropy ectively.	nperature a or the reac) S° (J/mol- 50.92 197.6 28.3 213.6 -1.1 x 10 810 kJ

Find the standard entropy change for the formation reaction of CO (g) at 298 K.

Substance	S° (J/mol·K)	ΔH° _f (kJ/mol)
C (s, graphite)	5.74	0
O ₂ (g)	205.14	0
CO (g)	197.67	-110.53

13.21 J/mol·K

-13.21 J/mol·K

	\bigcirc	89.36 J/mol·K
	\bigcirc	-89.36 J/mol·K
27	1 p	int
	Wha	is the standard free energy change for the chemical reaction in question 26?
	\bigcirc	137.16 kJ/mol
	\bigcirc	-137.16 kJ/mol
	\bigcirc	26,739.81 kJ/mol
	\bigcirc	-26,739.81 kJ/mol
28	1 p	int
	Rock fuels O ₂ (g	It fuel would be useless if its oxidation is not spontaneous. A chemist exploring potential for use in space considered using vaporized aluminum chloride. What is the coefficient of in the following balanced chemical equation that contains only whole numbered cients (i.e. no fractions)?
	\bigcirc	⁹ AICl ₃ (g) + O ₂ (g) \longrightarrow Al ₂ O ₃ (s) + CIO (g)
	\bigcirc	4
	\bigcirc	6
	\bigcirc	1

29 1 point

The below table contains thermodynamic data for the chemical reaction in question 28 at 2000 K. What is ΔG_{rxn} at 2000 K?

Substance	∆G _f (kJ/mol)		
AICI ₃ (g)	-467		
Al ₂ O ₃ (s)	-1034		
CIO (g)	75		
-492 kJ/mol rxn			
+492	+492 kJ/mol rxn		
-700	-700 kJ/mol rxn		

+700 kJ/mol rxn

30 1 point

Consider the reaction in questions 28 and 29. Would this choice of reactants make a good rocket fuel?

It depends on the enthalpy change of the system.

- No
- Yes
 - It depends on the entropy change of the system.

31 1 point

Consider the following chemical reaction. Calculate ΔG° for the reaction at 298 K. $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

Substance	ΔH° _f (kJ/mol)	S° (J/mol∙K)
CO (g)	-110.5	197.6
Cl ₂ (g)	0	223.0
COCl ₂ (g)	-223.0	289.2

-151.6 kJ/mol

- -500.0 kJ/mol
- -39.3 kJ/mol
- -73.3 kJ/mol

32 1 point

Consider the following table that contains an assortment of compounds and their corresponding standard free energies of formation. Which of these liquids are thermodynamically stable with respect to their constituent elements? Select all of the correct answers.

Name	Compound	Free Energy (kJ/mol)
Cyclohexane	C ₆ H ₁₂ (I)	6.4
Methanol	CH ₃ OH (I)	-166
Hydrazine	N ₂ H ₄ (I)	149
Hydrogen Peroxide	H ₂ O ₂ (I)	-120
Carbon Disulfide	CS ₂ (I)	65.3

Carbon Disulfide

- Cyclohexane
- Hydrogen Peroxide
- Methanol
- Hydrazine

33 1 point

Ammonia (NH₃) gives windex and cat urine its odor. It has a ΔH°_{vap} of 23.35 kJ/mol and a ΔS_{vap}^{o} of 97.43 J/mol·K. What is the normal boiling point of ammonia?

- -33.3°C
- 273°C
- 238.7°C
- -0.2°C