1 point	7. I point
In order for an endothermic reaction to be spontaneous,	1 point H ₂ burning in O ₂ to form H ₂ O (I) is an example of a system where the entropy of the universe
endothermic reactions are never spontaneous.	decreases.
the entropy increase in the system must equal the entropy decrease in the surroundings.	○ True
the entropy increase in the system must be greater than the entropy decrease in the surroundings.	H ₂ is not flammable.
nothing special is required; they are always spontaneous.	C False
heat must be supplied to the system.	
	8 1 point
1 point	Consider the following processes of ideal gases. Which of these processes leads to an increase entropy? Select all of the correct answers.
Which one of the following reactions has a positive entropy change?	Nitrogen gas is compressed isothermally to one half its original volume.
$\bigcirc 2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$	A glass of water loses 100 J of energy reversibly at 30°C.
$\bigcirc H_2O(g) \longrightarrow H_2O(I)$	The pressure of one mole of oxygen gas is allowed to double isothermally.
$2NH_4NO_3(s) \longrightarrow 2N_2(g) + 4H_2O(g) + O_2(g)$	Carbon dioxide is allowed to expand isothermally to 10 times its original volume.
$ BF_3(g) + NH_3(g) \longrightarrow F_3BNH_3(s) $	
$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	9 1 point
142(g) 1 312(g) 1 214(g)(g)	Which of the following chemical reactions exhibit a positive ΔS ? Select all of the correct answer
	$\square \qquad 2H_2O(I) + O_2(g) \rightarrow H_2O_2(I)$
1 point	$\square 2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$
Consider the following processes. Which entropy will increase as the process proceeds from left to right? Select all of the correct answers.	
$H_2O(I) \rightarrow H_2O(s)$	
$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	
NaCl (s) \rightarrow Na ⁺ (aq) + Cl ⁻ (aq)	10 1 point
	The temperature of 2.00 mol Ne(g) is increased from 25°C to 200°C at constant pressure.
	Assuming the heat capacity of Ne is 20.8 J/K·mol, calculate the change in the entropy of neon.
1 point What are the values of ΔS for the water, the surroundings, and the universe for the evaporation	Assume ideal gas behavior. +7.68 J/K
of water from an open pan at 25°C?	-19.2 J/K
opositive, negative, zero	
negative, negative, negative	○ -7.68 J/K
opositive, negative, positive	○ +19.2 J/K
positive, negative	
	11 1 point
1 point	The enthalpy of fusion of H ₂ O (s) at its normal melting point is 6.01 kJ/mol. What is the entrop change for freezing 1 mole of water at this temperature?
True/False: For a given transfer of energy, a greater change in entropy occurs when the	+22.0 J/mol·K
temperature is high.	-22.0 J/mol·K
False, because only heat flow affects the change in entropy, not temperature.	-20.2 J/mol·K
True	+20.2 J/mol·K
False, because as temperature decreases there is a greater change in entropy.	
_	
1 point	1 point Calculate the standard reaction entropy for the decomposition of 1 mol calcite to carbon dioxi
Which of the following lists phases in order of increasing entropy?	gas and solid calcium oxide at 25°C.
osolid, gas, liquid	$CaCO_3(s) \rightarrow CO_2(g) + CaO(s)$
osolid, liquid, gas	Substance S° (J/mol·K) CaO (s) 39.75
liquid, solid, gas	CO ₂ (g) 213.74
liquid, gas, solid	CaCO ₃ (s) 92.9
gas, liquid, solid	-266.9 J/mol·K
	346.4 J/mol·K
	160.6 J/mol·K
	-160.6 J/mol·K

Trans facilities and an engantive. Trans facilities between the processor of resident in the resident in the processor of resident in the processor of resident in the processor of resident in the resident in the processor of resident in the resident in th	13 1 point	19 1 point	
For the Feature Heal to recommendate followers or Freedom) Follow- Foature Heal to International Configurers of Freedom) Follow- South Configurers of Freedom (International Configurers) Follow- South Configurers (International Configurers) Follow- South Configurers) Follow- South Configurers (International Configurers) Follow- South Configurers) Follow- South Configurers (International Configurers) Follow- South Configurers) Follow- South Configurers (International Configurers) Follow- Foaturers (International Configurers) Follow- Foaturers (International Configurers) Foaturers (International Configurer		·	
Totar- fusion leads to lear microsolate (legares of Freedom). Figure - fusion leads to lear microsolate (legares of Freedom). Figure - fusion leads to lear microsolate (legares of Freedom). Mayoranth cased to induced by carbon at any toroparature charges, find the temperature at which any to parather, positive. Mayoranth cased to induced by temperature. Mayoranth cased to induced by temperature. Mayoranth cased to induced by temperature. Mayoranth cased to induced by temperature charges, find the temperature at which any toroparature disparation. Mayoranth			
Magnetille curron be reduced by cerbon at any temperature.			0 ₂ (g) 1 01 e (s)
Special			any temperature
1 space A spectra reflectors 900 for host to the surroundings (27°C). What is 45 of the surroundings (27°C), What is 45 of the surroundings (27°C), What is 45 of the surroundings (27°C). When surroundings (27°C) what is 45 of the surroundings (27°C). When surroundings (27°C) what is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45 of the surroundings (27°C). When surroundings (27°C) which is 45°C. The surr	False - fusion leads to less microstates (degrees of freedom).		any temperature.
A system releases 900 J of free to the surrounding (27°C), What is 55 of the surrounding J J J K	_		
3.3.3 // 3.3 // 3.3 // 3.3.3 // 3.3.3 // 3.3.3 // 3.3.3 // 3.3.3 // 3.3.3 // 3.3.3			
3.3 J/K 3.3 J/		Magnetite will be reduced by carbon at any	temperature.
What is the centropy change for the following chemical reaction at a 25°C1 C ₂ H ₂ (g) 1 2008			
3.3.3 J/K 3.3 1 j miel White a super sub-discovers in a up of coffee (on endothermic process), entropy changes of the super place water the surroundings, and surroundingses. 21			nical reaction at at 25°C?
1 1 1 1 1 1 1 1 1 1		1,7 0	
1 point	○ -33.3 J/K	$C_2H_2(g) + 2H_2(g) \longrightarrow C_2H_6(g)$	
When a sugar cabe discolves in a cap of coffee (an endothermic process), entropy changes of the sugar has writer the anomalings, and the universe respectively aven. regative, regative, regative, regative, regative prolive, positive, positive prolive, positive, positive, positive prolive, positive, positiv			
regulive, positive, positi			
negative, negative, negative, negative positive, positive with the positive pos			2 000 227.0 0 1.00
Departure, regarder, regarder positive, posi		-102.0 J/mol·K	
1973 J/mol K 1973 J/mol K 1974	positive, negative, negative	290.0 J/mol·K	
10 1 1 1 1 1 1 1 1 1	negative, positive	-232.7 J/mol·K	
1 point	positive, positive	159.3 J/mol·K	
What is the enthalpy change for the chemical reaction in question 20? Which substance has the lower molar entropy? King 2 31 298 K and 1.00 atm There is no way to know. Ne (g) at 298 K and 1.00 atm They are both the same. 17			
Which substance has the lower molar entropy?		21 1 point	
Which substance has the lower molar entropy? \[\text{ Kr (g)} at 298 K and 1.00 atm \] \[\text{ They are both the same.} \] 17 \[\text{ point } \] \[\text{ Calculate the standard entropy of vaporization of ethanol at its boiling point, 352 K. The standard moler enthalpy of vaporization of ethanol at its boiling point is 40.5 kJ/mol. \] \[\text{ 40.5 J/mol-K} \] \[40.5 J/mo	16 1 point	What is the enthalpy change for the chemical reac	tion in question 20?
Str (g) at 298 K and 1.00 atm -311.41 kJ/mol -142.05 kJ/mol -142.0		311.41 kJ/mol	
Time to Find way of Molecular Section Properties Section		-311.41 kJ/mol	
They are both the same. They are both the same. 17	There is no way to know.	-142.05 kJ/mol	
17	Ne (g) at 298 K and 1.00 atm	-538.14 kJ/mol	
Find the standard reaction free energy for the chemical reaction in question 20. -242.03 kJ/mol -40.5 J/mokK -41.5 J/mokK -40.5 J/mok K -40.5 J/mok M -40.5 J/mok K -40.5 J/mok M -40.5	They are both the same.		
Calculate the standard entropy of vaporization of ethanol at its boiling point, 352 K. The standard molar enthalpy of vaporization of ethanol at its boiling point is 40.5 kJ/mol. 440.5 J/mol-K 4115 J/mol-K 40.5 J/mol-K 415 J/mol-K 23 1 point Consider the following vaporization reaction. Br ₂ (0) — Br ₂ (g) Af a certain pressure, AH* = 34 kJ/mol and ΔS* = 0.098 kJ/mol-K. What is the lowest temperature at which this process is spontaneous? 74 K 347 K 347 K 347 K 4120 ₃ (s) + CO(g) — AI(s) + CO ₂ (g) AI ₂ (s) - A ₁ (a ₇ (a ₇ (s)) - 197.6 AI ₂ (s) - A ₁ (a ₇ (s) - 197.5 AI ₂ (s) - A ₁ (a ₇ (s) - 197.5 AI ₂ (s) - 15,000 kJ -11×10° kJ		22 1 point	
Calculate the standard entropy of vaporization of ethanol at its boiling point, 352 K. The standard molar entropy of vaporization of ethanol at its boiling point is 40.5 kl/mol. +40.5 l/mol-K -40.5 l/mol-K -115 l/mol-K -15 l/mol-K -10 pint Consider the following vaporization reaction. Br ₂ (0) — Br ₂ (g) At a certain pressure, ΔH° = 34 kl/mol and ΔS° = 0.098 kl/mol-K. What is the lowest temperature at which this process is spontaneous? -74 K -347 K -348 L -15 l/mol-K -18 l/mol -19 l/mol -19 l/mol -19 l/mol -10 l/mo	17 1 point	Find the standard reaction free energy for the che	mical reaction in question 20.
440.5 J/mol-K -115 J/mol-K -40.5 J/mol-		-242.03 kJ/mol	
+115 J/mol-K -40.5 J/mol-K -10.5 J/mol-K -115 J/mol-K -10.5 J/mol-K -115 J/mol-K -115 J/mol-K -10.5 J/m		69.07 kJ/mol	
- 40.5 J/mol-K115 J/mol-K 18		-305.59 kJ/mol	
115 J/mol-K 18 1 point Consider the following vaporization reaction. Br₂(l) → Br₂(g) At a certain pressure, ΔH² = 34 kJ/mol and ΔS² = 0.098 kJ/mol·K. What is the lowest temperature at which this process is spontaneous? 74 K 347 K 347 K 0.00288 K 22 1 point Assuming ΔH²m and ΔS²m are unaffected by temperature changes, find the temperature at which ΔG² is zero for the chemical reaction in question 20. -1338 K 1338 K 1338 K ΔG² will not equal 0 at any possible temperature. 24 1 point Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of Al₂O₃(s) at 298K? Al₂O₃(s) + CO(g) → Al(s) + CO₂(g) -15,000 kJ -11 x 10² kJ		69,068 kJ/mol	
18 1 point Consider the following vaporization reaction. Br ₂ (I) → Br ₂ (g) At a certain pressure, ΔH° = 34 kJ/mol and ΔS° = 0.098 kJ/mol-K. What is the lowest temperature at which this process is spontaneous? 74 K 347 K 0.00288 K 22 1 point Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of Al ₂ O ₃ (s) at 298K? Al ₂ O ₃ (s) + CO(g) → Al(s) + CO ₂ (g) -15,000 kJ -11.x 10 ⁶ kJ			
18 1 point Consider the following vaporization reaction. $B_{72}(I) - B_{72}(g)$ At a certain pressure, $\Delta H^o = 34$ kJ/mol and $\Delta S^o = 0.098$ kJ/mol-K. What is the lowest temperature at which this process is spontaneous? 74 K 347 K 0.00288 K 1 point Consider the following vaporization reaction. $B_{72}(I) - B_{72}(g)$ 347 K $A_{72}(I) - B_{72}(I) - B_{72}(I)$ Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of $A_{72}(I)$ and $A_{72}($	-115 J/mol·K	23 1 point	
Consider the following vaporization reaction. $Br_2(I) \rightarrow Br_2(g)$ At a certain pressure, $\triangle H^0 = 34$ kJ/mol and $\triangle S^0 = 0.098$ kJ/mol·K. What is the lowest temperature at which this process is spontaneous? 74 K 347 K 30.00288 K Al $_2O_3(s) + CO(g) \rightarrow Al(s) + CO_2(g)$ -15,000 kJ -11 x 10^6 kJ			
Consider the rollowing valportaction. Br $_2(D) \rightarrow Br_2(g)$ At a certain pressure, $\Delta H^\circ = 34$ kJ/mol and $\Delta S^\circ = 0.098$ kJ/mol-K. What is the lowest temperature at which this process is spontaneous? 74 K - 347 K 347 K 0.00288 K 24 1 point Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of $Al_2O_3(s) + CO(g) \longrightarrow Al(s) + CO_2(g)$ $Al_2O_3(s) + CO(g) \longrightarrow Al(s) + CO_2(g)$ $Al_3O_3(s) + CO(g) \longrightarrow Al(s) + CO_2(g)$ $-15,000 \ kJ$ $-11,1 \times 10^6 \ kJ$			estion 20.
At a certain pressure, $\Delta H^{\circ} = 34 \text{ kJ/mol } \text{ and } \Delta S^{\circ} = 0.098 \text{ kJ/mol·K}$. What is the lowest temperature at which this process is spontaneous? 74 K 347 K 0.00288 K Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of $Al_2O_3(s)$ at $298K$? $Al_2O_3(s) + CO(g) \longrightarrow Al(s) + CO_2(g)$ $Al_3O_3(s) + CO(g) \longrightarrow Al(s) + CO_2(g)$ $Al_3O_3(s) = -1676.0 = 0.098.3$ $Al_3O_3(s) = -1076.0 = 0.098.3$ $Al_3O_3(s) = -1076.0 = 0.098.3$ $Al_3O_3(s) = 0.008.3$ $Al_3O_3(s$			
	At a certain pressure, ΔH° = 34 kJ/mol and ΔS° = 0.098 kJ/mol·K. What is the lowest		
$\begin{array}{c} -347 \text{ K} \\ 347 \text{ K} \\ \hline 0.00288 \text{ K} \end{array}$			turo
$ \begin{array}{c} 347 \text{K} \\ \hline \bigcirc \ 0.00288 \text{K} \end{array} $ Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of $\text{Al}_2\text{O}_3(\text{s})$ at 298K ? $ \begin{array}{c} \text{Substance} \ \Delta \text{H}^\circ_f (\text{kJ/mol}) \left \text{S}^\circ (\text{J/mol} \cdot \text{K}) \right \\ \hline \text{Al}_2\text{O}_3(\text{s}) + \text{CO}_2(\text{g}) & \rightarrow \text{Al}(\text{s}) + \text{CO}_2(\text{g}) \\ \hline \begin{array}{c} \text{Al}_2\text{O}_3(\text{s}) & -1676.0 & 50.92 \\ \hline \text{CO}_2(\text{g}) & -110.5 & 197.6 \\ \hline \text{Al}_3(\text{s}) & 0.0 & 28.3 \\ \hline \text{CO}_2(\text{g}) & -393.5 & 213.6 \\ \hline \end{array} $			ture.
O.00288 K Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of $Al_2O_3(s)$ at 298K? $Al_2O_3(s) + CO(g) \longrightarrow Al(s) + CO_2(g)$ $Substance Althor(kJ/mol) So (J/mol-kJ) Al(s) - 1676.0 So.92$ $CO(g) -110.5 197.6$ $Al(s) 0.0 28.3$ $CO_2(g) -393.5 213.6$			
of 7.2 moles of Al ₂ O ₃ (s) at 298K? $ Al_2O_3(s) \ + \ CO(g) \ \longrightarrow \ Al(s) \ + \ CO_2(g) \ \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			h:- hbt dd 6 6 tb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00288 K		
CO (g) -110.5 197.6 Al (s) 0.0 28.3 CO ₂ (g) -393.5 213.6		ALO (c) + CO(c) + Al(c) + CO (c	
Al (s) 0.0 28.3 CO ₂ (g) -393.5 213.6		$Ai_2O_3(s) + CO(g) \longrightarrow Ai(s) + CO_2(g)$	2 0
CO ₂ (g) -393.5 213.6 ○ -15,000 kJ ○ -1.1 x 10 ⁵ kJ			
			○ -15,000 kJ ○ -1.1 x 10 ⁵ kJ

31 1 point
Consider the following chemical reaction. Calculate ΔG° for the reaction at 298 K. CO (g) + Cl ₂ (g) \rightarrow COCl ₂ (g)
Substance $\Delta H^{\circ}_{f}(kJ/mol)$ So $(J/mol-k)$
CO (g) -110.5 197.6
Cl ₂ (g) 0 223.0
1 1
○ -151.6 kJ/mol
○ -500.0 kJ/mol
-39.3 kJ/mol
○ -73.3 kJ/mol
32 1 point
Consider the following table that contains an assortment of compounds and their corresponding standard free energies of formation. Which of these liquids are thermodynamically stable with
respect to their constituent elements? Select all of the correct answers.
Name Compound Free Energy (kJ/mol)
Cyclohexane C ₆ H ₁₂ (I) 6.4
Methanol CH ₃ OH (I) -166
Hydrazine N ₂ H ₄ (I) 149
Hydrogen Peroxide H ₂ O ₂ (I) -120
Carbon Disulfide CS ₂ (I) 65.3
Carbon Disulfide
Cyclohexane
Hydrogen Peroxide
Methanol
Hydrazine
33 1 point
Ammonia (NH ₃) gives windex and cat urine its odor. It has a $\Delta H_{\text{vap}}^{\circ}$ of 97.43 J/mol·K. What is the normal boiling point of ammonia?
○ -33.3°C
○ 273°C
○ 238.7°C
○ -0.2°C

O It depends on the enthalpy change of the system.

O It depends on the entropy change of the system.

No Yes