HW10 - MO Theory

1 and 3
2 and 3
3 only

1 1 point	8 1 point
What is the expected bond order for the diatomic species B_2 ?	Which of the following statements is true about a molecule with a bond order of one?
O 1	The molecule has a single bond.
O 4	The molecule has no electrons in antibonding orbitals.
O 0	The molecule is as stable as molecules with bond orders of two and three.
○ 2 ○ 3	 Two side-by-side p orbitals combine to form pi bond and pi antibond orbitals; therefore, the bond order is 1.
2 1 point	9 1 point Which of the following must be observed when filling a molecular orbital energy diagran
Consider the molecule B_2 (explored above in question #1). What is the magnetism and	Aufbau Principle, Conservation of Matter and Energy, and Planck's Law
number of unpaired electrons in B ₂ ?	Hund's Rule, Pauli Exclusion Principle, and Dalton's Law
diamagnetic, 0	Aufbau Principle, Hund's Rule, and Pauli Exclusion Principle
paramagnetic, 2	Aufbau Principle, Hund's Rule, and Graham's Law
paramagnetic, 1	- Albad Millipid, Manas Nais, and Statistins 2217
diamagnetic, 2	
	10 1 point
3 1 point	Will H ₂ ⁺ be more or less stable than H ₂ and why?
According to molecular orbital theory, which of the following is NOT predicted to exist?	omore stable; H ₂ ⁺ has one less electron in bonding orbitals
, , ,	more stable; H ₂ ⁺ has one less electron in antibonding orbitals
○ He ²⁻	less stable; H ₂ ⁺ has one less electron in antibonding orbitals
He	less stable; H ₂ ⁺ has one less electron in bonding orbitals
All are predicted to exist.	
○ He ²⁺	
O He ₂	11 1 point A chemist has synthesized two new dyes based on the molecular structure of plant-base
	dyes. The lowest energy absorption line for the first dye is light in the visible region at 5
4 1 point	nm. The lowest energy absorption line for the second dye is light in the visible region at 645 nm. Based on this evidence, which molecule has the larger HOMO-LUMO gap?
N_2 has a bond order of 3 and O_2 has a bond order of 2. Based on this information, choose	The dye that absorbs at 530 nm.
the response that best completes the following sentence: N_2 is (less, more) stable than O_2 ,	The dye that absorbs at 645 nm.
and has a (larger, shorter) bond length and a (higher, lower) bond energy.	The gap is the same as both dyes absorb light in the visible region.
less, shorter, lower	There is not enough information given to answer the question.
more, shorter, higher	
less, longer, lower	12 1 point
omore, shorter, lower	An antibonding orbital is formed when
	an s-orbital overlaps a p-orbital.
5 1 point	a free electron is present in the molecule.
Which of the following species possesses a delocalized bond? NCI ₃	the overlap of the corresponding atomic orbitals leads to destructive interference
	a p _x -orbital overlaps a p _z -orbital.
No molecule given here possesses a delocalized bond.	
∪ H ₂ O	13 1 point
∪ H ₂ S	Which of the following are important contributions that MO theory makes to chemistry
○ NO ₃ -	 The ability to use MO theory with a computer to calculate the minimum energy geometry of a molecule.
	2. The ability to predict the energy at which a molecule will absorb light.
6 1 point	The ability to predict whether or not a molecule should be paramagnetic or diamagnetic.
Which of the following statements concerning molecular orbital theory is true?	O 1 only
 Bonding orbitals are lower in energy than their corresponding anti-bonding orbitals. If a molecule has an odd number of electrons, then it is paramagnetic. 	O 2 only
3. The MO diagrams for O_2 , F_2 , Ne_2 are NOT filled using the Aufbau principle.	2 and 3
1 and 2 1, 2, and 3	
1 and 3 2 and 3	1 and 2
1 only 2 only	1 and 3
	3 only
7 I point Which of the following statements concerning melecular orbital theory is /are true?	
Which of the following statements concerning molecular orbital theory is/are true? 1. Bonding orbitals are equal in energy to their corresponding anti-bonding orbitals.	
Adding electrons to anti-bonding orbitals destabilizes molecules. Unlike when we fill atomic orbitals, we DON'T use Hund's Rule to fill molecular orbitals.	
1, 2, and 3	
① 1 only	
2 only	