1 1 point

Which of the following combinations of hybridization and molecular geometry is possible?

- sp², tetrahedral
- sp³d, octahedral
- sp², linear
 - sp³, trigonal pyramidal

2 1 point

The sp³ hybridization has what percent s character and what percent p character respectively?

- 25%, 75%
- 75%, 25%
- 33%, 67%
- 50%, 50%

3 1 point

What hybridization would you expect for Se when it is found in SeO_4^{2-} ?

- sp³d²
- ⊖ sp³
- ⊖ sp²
- sp³d
- .

4 1 point

Give the hybridization of each central atom in order from A to E:

sp³, sp², sp², sp³, sp³

5 1 point

What hybridization would you expect for C in ethyne (C_2H_2) ?

- 🔵 sp
- ⊖ sp³
- ⊖ sp³d

1 point

sp² hybrid orbitals have...

trigonal pyramidal symmetry.

- trigonal planar symmetry.
- linear symmetry.
- tetrahedral symmetry.

7 1 point

- A sigma bond... always exists in conjunction with a pi bond.
- is always polar.
- stems from sp hybridization of orbitals.
- is composed of non-bonding orbitals.
- may exist alone or in conjunction with a pi bond.

8 1 point

In a new compound, it is found that the central carbon atom is ${\rm sp}^2$ hybridized. This implies that...

- carbon has four lone pairs of electrons.
- carbon has four sigma bonds.
- carbon is also involved in a pi bond.
- carbon has four regions of high electron density.
- carbon has a tetrahedral electronic geometry.

9 1 point

In the molecule, C_2H_4 , what are the atomic orbitals that participate in forming the sigma bond between the C and H atoms?

- 🔵 H: 1s, C: 2p
- H: 1s, C: sp²
- H: 2p, C: sp³
- H: sp², C: sp²
- H: 1s, C: sp