11 point
Which of the following combinations of hybridization and molecular geometry is possible?
\qquad

$$
\mathrm{sp}^{2} \text {, tetrahedral }
$$

$\mathrm{sp}^{3} \mathrm{~d}$, octahedral
sp^{2}, linear
sp^{3}, trigonal pyramidal

21 point
The sp^{3} hybridization has what percent s character and what percent p character
respectively?

- $25 \%, 75 \%$
- $75 \%, 25 \%$
- $33 \%, 67 \%$
- $50 \%, 50 \%$

31 point
What hybridization would you expect for Se when it is found in $\mathrm{SeO}_{4}{ }^{2-}$?

- $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(sp^{3}
(sp^{2}
($\mathrm{sp}^{3} \mathrm{~d}$

41 point
Give the hybridization of each central atom in order from A to E :

$\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
$\mathrm{sp}^{3}, \mathrm{sp}, \mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$
sp ${ }^{2}, s p, s p, s p^{3}, s p^{3}$
$\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$

51 point
What hybridization would you expect for C in ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$?
sp
(sp^{3}
(sp^{2}
($\mathrm{sp}^{3} \mathrm{~d}$
$6 \quad 1$ point
sp^{2} hybrid orbitals have...

- trigonal pyramidal symmetry.
trigonal planar symmetry.
(linear symmetry.
tetrahedral symmetry.
$7 \quad 1$ point
A sigma bond...
always exists in conjunction with a pi bond.
is always polar.
stems from sp hybridization of orbitals.
is composed of non-bonding orbitals.
may exist alone or in conjunction with a pi bond.

81 point
In a new compound, it is found that the central carbon atom is sp^{2} hybridized. This implies that...
carbon has four lone pairs of electrons.
(carbon has four sigma bonds.
(carbon is also involved in a pi bond.
carbon has four regions of high electron density.
carbon has a tetrahedral electronic geometry.

91 point

In the molecule, $\mathrm{C}_{2} \mathrm{H}_{4}$, what are the atomic orbitals that participate in forming the sigma bond between the C and H atoms?
H: 1s, C: 2p
$\mathrm{H}: 1 \mathrm{~s}, \mathrm{C}: \mathrm{sp}^{2}$
$\mathrm{H}: 2 \mathrm{p}, \mathrm{C}: \mathrm{sp}^{3}$
$\mathrm{H}: \mathrm{sp}^{2}, \mathrm{C}: \mathrm{sp}^{2}$
($\mathrm{H}: 1 \mathrm{~s}, \mathrm{C}: \mathrm{sp}$

