ener	mmon reference point in atomic theory is the energy of a free electron. A "free" tron is one that is free of all positive/negative attractions and repulsions. It is ctively an infinite distance away from all things. What is the value of this reference gy level of a free electron?
0 0 0	-∞ J 0 (zero) J +∞ J
	6.022 × 10 ²³ J oint
	sider attractive forces within matter between particles (any particles really). As those actions get stronger and stronger and the matter responds, the energy level of that ser stay approximately the same will decrease accordingly
O 1 p	will increase accordingly oint
	ch of the following experiments provided evidence that the electrons in atoms are nged in distinct energy levels? the existence of elements with non-integer atomic weights the results of the Millikan oil-drop experiment
0	the scattering of alpha particles by a metal foil the observation of line spectra from gas discharge tubes
Assu	oint $ me n_1 \text{and} n_2 \text{are two adjacent energy levels of an atom. The emission of radiation the longest wavelength would occur for which two values of n_1 \text{and} n_2 ? $
0 0	7,6 8,7 4,3
Use	oint the Rydberg formula for atomic hydrogen to calculate the wavelength of the photo ted in the transition of an electron from $n=4$ to $n=2$.
0 0	94.9 nm 205 nm 486 nm
	8.63 nm oint
	at is the name given to the spectroscope series to which the transition described in stion 3 belongs? Brackett series Lyman series
0 0	Balmer series Paschen series oint
	hat region of light will the photons emitted in question 3 lie? visible, red ultraviolet
0	visible, blue visible, yellow
The He ⁺ .	
R(r) ²	O A
	B
0 0 0	There is no way to know.
	A soint
	tom? $ \begin{array}{c} 1 & 1 & 1 & 1 \\ 2 & 6 & 8 \end{array} $
O 1 p	8 18 oint
The	three quantum numbers for an electron in a hydrogen atom in a certain state are $4,\ \ell=2,\ m_{\ell}=1.$ The electron is located in what type of orbital?
0	4p 4d 3p
	oint number that describes the main energy level of an electron in an atom is the angular momentum quantum number, ℓ
0	the magnetic quantum number, m_{ℓ} the atomic number, z the principal quantum number, n
Can	oint an electron in an atom be in an energy level described by the set of quantum numbers $1, \ell=3, m_\ell=-2$?
0 0	yes $\label{eq:no_loss} \text{no, because } m_\ell \text{ must equal } \pm 1$ $\label{eq:no_loss} \text{no, because } \ell \text{ must equal } n-1$
O 3 1 p	no, because m_ℓ cannot be negative oint
0	electron in a 3d orbital could have which of the following quantum numbers? $n=3,\ \ell=1,\ m_\ell=-1$ $n=3,\ \ell=2,\ m_\ell=0$
_	$n = 3, \ell = 3, m_{\ell} = 1$ $n = 3, \ell = 2, m_{\ell} = -3$
	oint v many p electrons does Se (atomic number 34) possess? 34 16
0	4 18
	oint which H-atom wavefunction are you most likely to find the electron farthest from t eus? 2p
0	4p 3p 2s
	oint transition metals are elements with partially filled s subshells.
0 0	d subshells. f subshells. p subshells.
Whi	oint ch element is predicted to have the ground-state electron configuration shown w? $3s^2 \ 3p^4$
0 0 0	sulfur aluminum chlorine silicon
	oint ch of the following is the valence electronic structure for a halogen?
0 0	$n s^2 n p^{10}$ $n s^2 n p^5$ $n s^2 n p^6$
O 1 p	ns^2 oint
	e Aufbau order of occupancy of electronic energy levels, the level occupied just af
0 0	5d 4d
The	electron configuration for the Mn atom is $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7$
	$1s^2 2s^2 2p^6 3s^2 3p^3$ $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$ $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^5$
The	oint ground state electron configuration of a neutral silver atom is [Kr] 5s ¹ 4d ¹⁰ instead of 5s ² 4d ⁹ . This observation can be explained (theoretically) by the fact that
0 0 0	only one electron can occupy a 5s orbital. the magnetism measurement shows one unpaired electron. an enhanced stability is associated with filled sets of equivalent orbitals.
	the 4d subenergy level has higher energy than the 5s subenergy level. oint ch of the following atoms has the largest radius?
0	CI F Br
	oint n atom's radius decreases
As a	its ionization energy will either increase or decrease depending on whether you a going up a column or across a row. its ionization energy decreases.
0	its ionization energy does not change. its ionization energy increases.
	ch of the following would be expected to have the highest first ionization energy? Xe Ar
0 0 0	Si Na Cl
	oint v many s electrons does P (atomic number 15) possess? 5
0000	2 4 6
	oint v many values of the quantum number ℓ are possible when n=5?
0	7564
\bigcirc	oint $_{\prime}$ many values of m_{ℓ} are allowed for an electron in a 5f subshell ?
	576
How O O O	7 6 4 oint
How O O O	7 6 4

30 1 point

0

31 1 point

32 1 point

Rb

Ca

Sr

Na

 $Ni(g) \longrightarrow Ni^{2+}(g) + 2e^{-}$

 $O \quad \text{Ni(g)} \longrightarrow \text{Ni}^{2+}(\text{g}) + \text{e}^{\text{-}}$

 $\bigcirc \qquad Ni^+(g) \longrightarrow Ni^{2+}(g) + e^-$

10 - 50 nm

0.1 - 0.5 nm

None of these.

1 - 5 nm

The diameter of the electron density of an atom is roughly...

For which of the following elements would the size of the neutral atom (atomic radius) be the largest?

Write an equation that represents the second ionization energy of nickel.