1 point Two gases are contained in gas bulbs connected by a valve. Gas A is present in a 1 liter bulb at a	6 1 point Which of the following statements about Kinetic-Molecular Theory of gases is FALSE?
pressure of 818 torr. Gas B exerts a pressure of 328 torr in a 1 liter bulb. The valve is opened and the two gases come to equilibrium. What is the partial pressure of gas A expressed after	Gases consist of molecules in continuous random motion.
equilibrium?	O Collisions between molecules are elastic.
O 409 torr	O The average kinetic energy of gas molecules in a sample of gas is independent of
O 656 torr	temperature.
O 1640 torr	The distance between molecules is much larger than the diameter of each molecule.
O 164 torr	_
	7 1 point
1 point	A plot of the Maxwell distribution of speeds for the same sample of gas at different temperatures shows that
A mixture of oxygen and helium is 92.3% by mass oxygen. It is collected at atmospheric pressure (745 torr). What is the partial pressure oxygen in this mixture? Hint: partial pressures are	at low temperatures, most molecules have speeds close to their average speed.
calculated from the total pressure via MOLE FRACTIONS.	as the temperature decreases, a high proportion of molecules have very high speeds.
O 688 torr	as the temperature decreases, the distribution of speeds widens.
O 412 torr	at high temperatures, most molecules have speeds close to their average speed.
O 333 torr	as the temperature increases, a high proportion of molecules have very slow speeds.
O 447 torr	
1 point If the average speed of a water molecule at 25°C is 640 m/s, what is the average speed at 100°C? 320 m/s 572 m/s 716 m/s	8 1 point Consider the gases H2, Ne, O2, and Ar. Put them in order of their DECREASING rate of effusions and the property of their DECREASING rate of effusions are considered by the property of their DECREASING rate of effusions are considered by the property of their DECREASING rate of effusions are considered by the property of their DECREASING rate of effusions are considered by the property of their DECREASING rate of effusions are considered by the property of the pro
O 1280 m/s	9 1 point
La co	Calculate the ratio of the rate of effusion of CO ₂ to that of He.
1 point Air bags in automobiles contain crystals of sodium azide (NaN3) which, during a collision,	O 3.3:1
decompose rapidly to give nitrogen gas and sodium metal. (Potassium nitrate and silicon dioxide	0.30:1
are added to remove the sodium metal by converting it into a harmless material.) The nitrogen gas liberated behaves as an ideal gas and any solid produced has a negligible volume (its volume	O 12:1
can be ignored). Calculate the mass of sodium azide required to generate enough nitrogen gas to	O 11:1
fill a 57.0 L air bag at 1.04 atm and 16°C. 2.50 g	0.090:1
1960 g	
O 108 g	10 1 point
O 163 g	A sample of He gas and O_2 have the same temperature, pressure, and volume. Which gas has
O 100 g	greater number of collisions of gas molecules with the walls of the container?
	O The O ₂ , since it has a higher average momentum as it is more massive.
1 point What is the rest mean square speed of the nitrogen gas malegules generated in question 42	The He gas because it is less massive and moving with a higher average velocity.
What is the root mean square speed of the nitrogen gas molecules generated in question 4? 16.0 m/s	O The O ₂ gas since it has a higher average kinetic energy because it is more massive.
O 50.4 m/s	They are the same since the pressure is the same.
0 507 m/s	
① 1.59 m/s	
U 1.0.7 III/S	

11 1 point	17 1 point
Nitric acid is produced commercially by the Ostwald process. In the first step, ammonia is	Deviations from ideal gas behavior can be modeled with other equations of state. One such
oxidized to nitric oxide via the following reaction equation: $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$	equation that attempts to account for the repulsive interactions of gas particles is the hard sphere model:
A sample of NH $_3$ gas in a 2.00 L container exerts a pressure of 0.500 atm. A sample of O_2 gas in a	$\Gamma(V-nD) = nKI$
1.00 L container exerts a pressure of 1.50 atm. If these two gasses are pumped into a 3.00 L container and allowed to react with one another (with proper catalysts), calculate the partial	A 1 mole sample of He gas at 1000 K and 500 bar has a volume of 0.176 L. Estimate the value o the constant 'b' in the hard sphere model for He.
pressure of NO after the reaction is complete. Assume 100% yield for the reaction at a constant	O.166 L/mol
temperature.	O 0.01 L/mol
O 0.333 atm	O 0.176 L/mol
O 1.50 atm	O 0.025 L/mol
O.400 atm	O.023 L/III0I
O 0.250 atm	
	18 1 point
12 1 point	The ideal gas equation models the gas behavior observed in the world
A 5.0 L flask containing O_2 at 2.00 atm is connected to a 3.0 L flask containing H_2 at 4.00 atm	operfectly for some gases, but not for others.
and the gases are allowed to mix. What is the mole fraction of H ₂ ?	very well under all conditions for most gases.
O 0.33	very well under some conditions, but shows large errors in others.
O 0.55	operfectly for pressures under 20 atm.
0.25	perfectly for temperatures under 1000 K.
O 0.67	
	19 1 point
13 1 point	Which of the following gases would you predict to have the largest value of the van der Waals
A gas mixture being used to simulate the atmosphere of another planet at 23°C consists of 337	coefficient, 'b?'
mg of methane, 148 mg of argon, and 210 mg of nitrogen. The partial pressure of nitrogen at 296 K is 19.0 kPa. Calculate the total pressure of the mixture.	O_2F_6
276 K is 17.0 KPa. Calculate the total pressure of the mixture. 29.1 kPa	$O C_2F_2CI_4$
	O co ₂
() 165 kPa	O CI ₂
O 109 kPa	O C ₂ FCl ₅
O 81.6 kPa	
	20 1 point
14 1 point	Consider the following van der Waals coefficients:
Calculate the volume of the mixture described in question 13. O 0.226 L	Gas $a(L^2 \cdot atm \cdot mol^{-2})$ $b(L \cdot mol^{-1})$
	ammonia 4.17 0.0371
○ 0.971 L	chlorine 6.49 0.0562
O 9.58 mL	helium 0.034 0.0237
O 0.902 L	neon 0.211 0.0171 water 5.46 0.0305
_	Water 5.10 0.0003
15 1 point	Which of the following gases has the largest attractive forces?
When heated, solid mercury oxide (HgO) will decompose into mercury and oxygen gas according to following equation:	O chlorine
to following equation: $2HgO(s) \longrightarrow 2Hg(g) + O_2(g)$	O helium
Starting with a container that has only solid HgO in it, the temperature is raised to 700 K and all	neon
of the solid decomposes. The total pressure in the container is 0.75 bar. What is the partial pressure of oxygen?	O ammonia
O.125 bar	O water
O .25 bar	
O.50 bar	
O.75 bar	21 1 point
0.70 25.1	Which type of calculator are you allowed on the exam?
	a scientific calculator
16 1 point	a graphing calculator
All gases exhibit ideal behavior in low pressure situations because when the pressure is very low,	
the gas particles are	my calculator app on my phone
omoving very slowly.	any type of calculator I want
O undergoing only elastic collisions.	
experiencing a balance of kinetic and potential energy.	
O far apart and rarely interacting.	
O slightly attracted to one another.	