HV	/02 - Ideal Gases
_	is enclosed in a 10.0 L tank at 1200 mmHg pressure. Which of the following is a reasonable for the pressure when the gas is pumped into a 5.00 L vessel? 2400 mmHg 0.042 mmHg 600 mmHg
	int ople of gas in a closed container at a temperature of 76°C and a pressure of 5.0 atm is d to 399°C. What pressure does the gas exert at the higher temperature? 2.6 atm 0.95 atm 9.6 atm 26 atm
pressu	int containing 163 cm ³ of hydrogen was collected under a pressure of 26.7 kPa. What are would have been required for the volume of the gas to have been 68 cm ³ , assuming the rature is held constant? 64.0 kPa 78.2 kPa 32.0 kPa 11.1 kPa
	uple of nitrogen gas is contained in a piston with a freely moving cylinder. At 0°C, the ne of the gas is 371 mL. To what temperature must the gas be heated to occupy a volume of
	int O L sample of a gas exerts a pressure of 1040 torr at 50.0°C. In what volume would the sample exert a pressure of 1.00 atm at 50.0°C? 10.5 L 6.84 L 3.33 L 0.581 L
	int mass of O_2 is required to produce 14.5 g of CO_2 if the reaction has a 65.0% yield? g) + $2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$
0 0 0 0	21.1 g 32.4 g 13.7 g 16.2 g
Consi 2Al + This r	der the following reaction: $6HCI \longrightarrow 2AICI_3 + 3H_2$ eaction has a yield of 82.5%. How many moles of HCI are needed to produce 14.0 L of H_2 1 K and 1.11 atm? 0.540 mol 0.890 mol 1.31 mol 1.08 mol
H ₂ (g)	int eaction below has a percent yield of 45.0%. + Cl ₂ (g) → 2HCl(g) many moles of HCl gas are produced if 15.5 L of Cl ₂ at STP and excess H ₂ are reacted? 0.623 mol 0.156 mol 0.346 mol 0.769 mol
9 1 pool of the second of the	int have 44.8 L of nitrogen gas at standard temperature and pressure, how much will it weigh? 56 g 28 g 28 kg 44.8 g
At 80 camp	.0°C and 12.0 torr, the density of camphor vapor is 0.0829 g/L. What is the molar mass of
What	is the density of nitrogen gas at STP? 4.00 g/L 1.25 g/L 2.50 g/L 0.625 g/L
oxyge	mist has synthesized a greenish-yellow gaseous compound that contains only chlorine and and has a density of 7.71 g/L at 36.0°C and 2188.8 mmHg. What is the molar mass of the ound? 25.8 g/mol 86.9 g/mol 51.5 g/mol 67.9 g/mol
How O O O	int many moles of gaseous carbon dioxide are there in 15 L at STP? 0.67 moles 0.52 moles 1.0 moles 3.0 moles
CH ₄ (§	der the following reaction: (a) + 2O ₂ (g) \longrightarrow CO ₂ (g) + 2H ₂ O(l) is the final volume if 10 L of methane (CH ₄) reacts completely with 20 L of oxygen? 15 L 20 L It cannot be determined without knowing the temperature at which this reaction takes place. 10 L 30 L
(C ₆ H ₂	int late the volume of methane (CH ₄) produced by the bacterial breakdown of 3.87 kg of sugar $_{12}O_6$) at 258 K and 726 torr. $_2O_6$ (aq) \rightarrow 3CH ₄ (g) + 3CO ₂ (g) 858 L 1430 L 1450 L
N ₂ (g) If the	der the following reaction: + $3H_2(g) \rightarrow 2NH_3(g)$ reaction is carried out at constant temperature and pressure, how much H_2 is required to with 9.8 L of N_2 ?
7 1 po	
disso	volume of pure oxygen gas (O_2) measured at 546 K and 1.00 atm is formed by complete ciation of 0.5 mol of Ag_2O ? $O(s) \longrightarrow 4Ag(s) + O_2(g)$ 5.60 L 16.8 L 33.6 L 11.2 L
	volume of a gaseous system is increased by a factor of 3 and the temperature is raised by a of 6, then the pressure of the system will by a factor of decrease, 0.5 increase, 18 increase, 0.5 decrease, 18 increase, 2
has tv	int ave a sample of H_2 gas and Ar gas at the same temperature and pressure, but the H_2 gas vice the volume of the Ar gas. Assuming the gases behave ideally, which gas has the larger BER DENSITY (gas particles per volume)? they are the same It depends on the value of the temperature and the pressure. the H_2 gas the Ar gas
	int in has the higher mass density (g/L): a sample of $\rm O_2$ with a volume of 10 L, or a sample of Cl a volume of 3 L? Both samples are at the same temperature and pressure. they are the same lt depends on the value of the temperature and pressure. the $\rm O_2$ the $\rm Cl_2$
What	is the mass of oxygen gas in a 16.6 L container at 34.0°C and 6.22 atm? 1180 g 4.10 g 432 g 131 g
that t	int nethod of estimating the temperature of the center of the sun is based on the assumption he center consists of gases that have an average molar mass of 2.00 g/mol. If the density of enter of the sun is 1.40 g/cm^3 at a pressure of 1.30×10^9 atm, calculate the temperature. $2.26 \times 10^{10} ^{\circ}\text{C}$ $2.26 \times 10^{7} ^{\circ}\text{C}$ $2.26 \times 10^{13} ^{\circ}\text{C}$ $700 ^{\circ}\text{C}$
23 1 po What 1.90 a	is the molar mass of a gas if 0.473 g of the gas occupies a volume of 376 mL at 23.0°C and
2HCl	int der the following reaction: + Na ₂ CO ₃ → 2NaCl + H ₂ O + CO ₂ is reaction, 179.2 L of CO ₂ is collected at STP. How many moles of NaCl are also formed? 8.00 moles 32.0 moles 16.0 moles
3.22 §	int nalysis of a hydrocarbon revealed that it was 85.6281% C and 14.3719% H by mass. When g of the gas was stored in a 1.2 L flask at -190.842°C, it exerted a pressure of 491 torr. What molecular formula of the hydrocarbon? $ C_4 H_{10} $ $ C_3 H_8 $ $ C_4 H_6 $

O C₂H₄