1 point	7 1 point
A gas is enclosed in a 10.0 L tank at 1200 mmHg pressure. Which of the following is a reasonable	Consider the following reaction:
value for the pressure when the gas is pumped into a 5.00 L vessel? 2400 mmHg	2AI + 6HCI \longrightarrow 2AICl ₃ + 3H ₂ This reaction has a yield of 82.5%. How many moles of HCl are needed to produce 14.0 L of H ₂
	at 351 K and 1.11 atm?
0.042 mmHg	O 0.540 mol
0 600 mmHg	O 0.890 mol
O 24 mmHg	O 1.31 mol
	O 1.08 mol
1 point	
A sample of gas in a closed container at a temperature of 76°C and a pressure of 5.0 atm is heated to 399°C. What pressure does the gas exert at the higher temperature?	8 1 point
O 2.6 atm	The reaction below has a percent yield of 45.0%. $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$
O 0.95 atm	How many moles of HCl gas are produced if 15.5 L of Cl_2 at STP and excess H_2 are reacted?
O 9.6 atm	O 0.623 mol
O 26 atm	O 0.156 mol
	O 0.346 mol
1 point	0.769 mol
A flask containing 163 cm ³ of hydrogen was collected under a pressure of 26.7 kPa. What	
pressure would have been required for the volume of the gas to have been 68 cm ² assuming the	
temperature is held constant? 64.0 kPa	9 1 point If you have 44.8 L of nitrogen gas at standard temperature and pressure, how much will it weigh
	56 g
78.2 kPa	O 28 g
32.0 kPa	
O 11.1 kPa	() 28 kg
	O 44.8 g
1 point	
A sample of nitrogen gas is contained in a piston with a freely moving cylinder. At 0°C, the volume of the gas is 371 mL. To what temperature must the gas be heated to occupy a volume of	10 1 point
557 mL?	At 80.0°C and 12.0 torr, the density of camphor vapor is 0.0829 g/L. What is the molar mass of camphor?
O 212°C	O 3490 g/mol
O 137°C	O 152 g/mol
○ -91.2℃	O 243 g/mol
O 484°C	34.5 g/mol
	54.5 g/iiloi
1 point	
A 5.00 L sample of a gas exerts a pressure of 1040 torr at 50.0°C. In what volume would the	11 1 point
same sample exert a pressure of 1.00 atm at 50.0°C?	What is the density of nitrogen gas at STP?
O 10.5 L	O 4.00 g/L
O 6.84 L	() 1.25 g/L
O 3.33 L	O 2.50 g/L
O 0.581 L	O.625 g/L
1 point	12 1 point
What mass of O_2 is required to produce 14.5 g of CO_2 if the reaction has a 65.0% yield?	A chemist has synthesized a greenish-yellow gaseous compound that contains only chlorine and oxygen and has a density of 7.71 g/L at 36.0°C and 2188.8 mmHg. What is the molar mass of the
$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$	compound?
O 21.1 g	O 25.8 g/mol
O 32.4 g	O 86.9 g/mol
O 13.7 g	○ 51.5 g/mol
O 16.2 g	67.9 g/mol

13 1 point	19 1 point
How many moles of gaseous carbon dioxide are there in 15 L at STP?	You have a sample of H_2 gas and Ar gas at the same temperature and pressure, but the H_2 gas
O 0.67 moles	has twice the volume of the Ar gas. Assuming the gases behave ideally, which gas has the larger NUMBER DENSITY (gas particles per volume)?
O 0.52 moles	they are the same
O 1.0 moles	It depends on the value of the temperature and the pressure.
3.0 moles	O the H ₂ gas
	O the Ar gas
14 1 point	
Consider the following reaction: $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$	20 1 point
What is the final volume if 10 L of methane ($\mathrm{CH_{4}}$) reacts completely with 20 L of oxygen?	Which has the higher mass density (g/L): a sample of O_2 with a volume of 10 L, or a sample of Cl_2
O 15 L	with a volume of 3 L? Both samples are at the same temperature and pressure.
O 20 L	they are the same
O It cannot be determined without knowing the temperature at which this reaction takes	It depends on the value of the temperature and pressure.
place.	O the O ₂
○ 10 L○ 30 L	O the Cl ₂
15 1 point	21 1 point What is the mass of oxygen gas in a 16.6 L container at 34.0°C and 6.22 atm?
Calculate the volume of methane (CH ₄) produced by the bacterial breakdown of 3.87 kg of sugar	O 1180 g
(C ₆ H ₁₂ O ₆) at 258 K and 726 torr.	O 4.10 g
$C_6H_{12}O_6(aq) \rightarrow 3CH_4(g) + 3CO_2(g)$	O 432 g
O 858 L	O 131 g
O 1430 L	
O 1450 L	22 1 point
O 2610 L	One method of estimating the temperature of the center of the sun is based on the assumption
	that the center consists of gases that have an average molar mass of 2.00 g/mol. If the density of
16 1 point	the center of the sun is 1.40 g/cm^3 at a pressure of 1.30×10^9 atm, calculate the temperature.
Consider the following reaction: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	O 2.26 x 10 ¹⁰ °C
If the reaction is carried out at constant temperature and pressure, how much H ₂ is required to	O 2.26 x 10 ⁷ °C
react with 9.8 L of N ₂ ?	O 2.26 x 10 ¹³ °C
O 39.2 L	○ 700°C
O 19.6 L	
O 14.7 L	23 1 point
O 29.4 L	What is the molar mass of a gas if 0.473 g of the gas occupies a volume of 376 mL at 23.0°C and 1.90 atm?
	O 13.2 g/mol
17 1 point	O 0.0161 g/mol
What volume of pure oxygen gas (O ₂) measured at 546 K and 1.00 atm is formed by complete dissociation of 0.5 mol of Ag ₂ O?	O 16.1 g/mol
$2Ag_2O(s) \longrightarrow 4Ag(s) + O_2(g)$	O 1.25 g/mol
O 5.60 L	
O 16.8 L	24 1 point
O 33.6 L	Consider the following reaction:
O 11.2 L	2HCl + Na ₂ CO ₃ → 2NaCl + H ₂ O + CO ₂ For this reaction, 179.2 L of CO ₂ is collected at STP. How many moles of NaCl are also formed?
	8.00 moles 8.00 moles
18 1 point	32.0 moles
If the volume of a gaseous system is increased by a factor of 3 and the temperature is raised by a	O 16.0 moles
factor of 6, then the pressure of the system will by a factor of O decrease, 0.5	12.5 moles
increase, 18	O 12.3 liloles
increase, 0.5	
decrease, 18	The analysis of a hydrocarbon revealed that it was 85.6281% C and 14.3719% H by mass. When
oncrease, 2	3.22 g of the gas was stored in a 1.2 L flask at -190.842°C, it exerted a pressure of 491 torr. What
	is the molecular formula of the hydrocarbon?
decrease, 2	$O_{4}H_{10}$
	O C ₃ H ₈
	$O c_4H_6$
	\bigcirc C_2H_4