$1 \quad 1$ point
A gas is enclosed in a 10.0 L tank at 1200 mmHg pressure．Which of the following is a reasonable value for the pressure when the gas is pumped into a 5.00 L vessel？
〇 2400 mmHg
○ 0.042 mmHg
〇 600 mmHg
〇 24 mmHg

21 point
A sample of gas in a closed container at a temperature of $76^{\circ} \mathrm{C}$ and a pressure of 5.0 atm is heated to $399^{\circ} \mathrm{C}$ ．What pressure does the gas exert at the higher temperature？
○ 2.6 atm
（ 0.95 atm
－ 9.6 atm
－ 26 atm

31 point

A flask containing $163 \mathrm{~cm}^{3}$ of hydrogen was collected under a pressure of 26.7 kPa ．What pressure would have been required for the volume of the gas to have been 68 cm ，assuming the temperature is held constant？
O 64.0 kPa
O 78.2 kPa
O 32.0 kPa
○ 11.1 kPa
$4 \quad 1$ point
A sample of nitrogen gas is contained in a piston with a freely moving cylinder．At $0^{\circ} \mathrm{C}$ ，the volume of the gas is 371 mL ．To what temperature must the gas be heated to occupy a volume of 557 mL ？
－ $212^{\circ} \mathrm{C}$
－ $137^{\circ} \mathrm{C}$
（ $-91.2^{\circ} \mathrm{C}$
－ $484^{\circ} \mathrm{C}$

51 point
A 5.00 L sample of a gas exerts a pressure of 1040 torr at $50.0^{\circ} \mathrm{C}$ ．In what volume would the same sample exert a pressure of 1.00 atm at $50.0^{\circ} \mathrm{C}$ ？
○ 10.5 L
○ 6.84 L
○ 3.33 L
00.581 L
$6 \quad 1$ point
What mass of O_{2} is required to produce 14.5 g of CO_{2} if the reaction has a 65.0% yield？ $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\bigcirc 21.1 \mathrm{~g}$
O 32.4 g
○ 13.7 g
○ 16.2 g
$7 \quad 1$ point
Consider the following reaction：
$2 \mathrm{Al}+6 \mathrm{HCl} \longrightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
This reaction has a yield of 82.5% ．How many moles of HCl are needed to produce 14.0 L of H_{2} at 351 K and 1.11 atm ？
$\bigcirc 0.540 \mathrm{~mol}$
$\bigcirc 0.890 \mathrm{~mol}$
○ 1.31 mol
○ 1.08 mol
$8 \quad 1$ point
The reaction below has a percent yield of 45.0% ．
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g})$
How many moles of HCl gas are produced if $15.5 \mathrm{~L}^{\text {of } \mathrm{Cl}_{2} \text { at STP and excess } \mathrm{H}_{2} \text { are reacted？}}$
$\bigcirc 0.623 \mathrm{~mol}$
$\bigcirc 0.156 \mathrm{~mol}$
O 0.346 mol
－ 0.769 mol

91 point
If you have 44.8 L of nitrogen gas at standard temperature and pressure，how much will it weigh？
○ 56 g
－ 28 g
〇 28 kg
$\bigcirc 44.8 \mathrm{~g}$
$10 \quad 1$ point
At $80.0^{\circ} \mathrm{C}$ and 12.0 torr，the density of camphor vapor is $0.0829 \mathrm{~g} / \mathrm{L}$ ．What is the molar mass of camphor？
○ $3490 \mathrm{~g} / \mathrm{mol}$
○ $152 \mathrm{~g} / \mathrm{mol}$
－ $243 \mathrm{~g} / \mathrm{mol}$
○ $34.5 \mathrm{~g} / \mathrm{mol}$

111 point
What is the density of nitrogen gas at STP？
○ $4.00 \mathrm{~g} / \mathrm{L}$
○ $1.25 \mathrm{~g} / \mathrm{L}$
○ $2.50 \mathrm{~g} / \mathrm{L}$
○ $0.625 \mathrm{~g} / \mathrm{L}$

121 point
A chemist has synthesized a greenish－yellow gaseous compound that contains only chlorine and oxygen and has a density of $7.71 \mathrm{~g} / \mathrm{L}$ at $36.0^{\circ} \mathrm{C}$ and 2188.8 mmHg ．What is the molar mass of the compound？
○ $25.8 \mathrm{~g} / \mathrm{mol}$
○ $86.9 \mathrm{~g} / \mathrm{mol}$
○ $51.5 \mathrm{~g} / \mathrm{mol}$
○ $67.9 \mathrm{~g} / \mathrm{mol}$

131 point
How many moles of gaseous carbon dioxide are there in 15 L at STP?
O 0.67 moles
O 0.52 moles
O 1.0 moles
3.0 moles
$14 \quad 1$ point
Consider the following reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What is the final volume if 10 L of methane $\left(\mathrm{CH}_{4}\right)$ reacts completely with 20 L of oxygen?
O 15 L
O 20L
O It cannot be determined without knowing the temperature at which this reaction takes place.
O 10L
O 30 L

151 point
Calculate the volume of methane $\left(\mathrm{CH}_{4}\right)$ produced by the bacterial breakdown of 3.87 kg of sugar
$\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ at 258 K and 726 torr.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \rightarrow 3 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})$
○ 858 L
O 1430 L
O 1450 L
O 2610 L
$16 \quad 1$ point
Consider the following reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
If the reaction is carried out at constant temperature and pressure, how much H_{2} is required to react with 9.8 L of N_{2} ?
O 39.2 L
O 19.6L
○ 14.7 L
O 29.4 L

171 point
What volume of pure oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at 546 K and 1.00 atm is formed by complete dissociation of 0.5 mol of $\mathrm{Ag}_{2} \mathrm{O}$?
$2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow 4 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
○ 5.60 L
O 16.8 L
O 33.6L
O 11.2 L

181 point
If the volume of a gaseous system is increased by a factor of 3 and the temperature is raised by a factor of 6 , then the pressure of the system will \qquad by a factor of \qquad
O decrease, 0.5
O increase, 18
O increase, 0.5
O decrease, 18
O increase, 2
O decrease, 2

191 point
You have a sample of H_{2} gas and Ar gas at the same temperature and pressure, but the H_{2} gas has twice the volume of the Ar gas. Assuming the gases behave ideally, which gas has the larger NUMBER DENSITY (gas particles per volume)?

O they are the same
O It depends on the value of the temperature and the pressure.
O the H_{2} gas
O the Argas

201 point
Which has the higher mass density $(\mathrm{g} / \mathrm{L})$: a sample of O_{2} with a volume of 10 L , or a sample of Cl_{2} with a volume of 3 L ? Both samples are at the same temperature and pressure.
O they are the same
It depends on the value of the temperature and pressure.
O the O_{2}
O the Cl_{2}

21 1point
What is the mass of oxygen gas in a 16.6 L container at $34.0^{\circ} \mathrm{C}$ and 6.22 atm ?
O 1180 g
O 4.10 g
O 432 g
O 131 g

221 point
One method of estimating the temperature of the center of the sun is based on the assumption that the center consists of gases that have an average molar mass of $2.00 \mathrm{~g} / \mathrm{mol}$. If the density of the center of the sun is $1.40 \mathrm{~g} / \mathrm{cm}^{3}$ at a pressure of $1.30 \times 10^{9} \mathrm{~atm}$, calculate the temperature.
($2.26 \times 10^{10}{ }^{\circ} \mathrm{C}$
O $2.26 \times 10^{7}{ }^{\circ} \mathrm{C}$
O $2.26 \times 10^{13}{ }^{\circ} \mathrm{C}$
O $700^{\circ} \mathrm{C}$
$23 \quad 1$ point
What is the molar mass of a gas if 0.473 g of the gas occupies a volume of 376 mL at $23.0^{\circ} \mathrm{C}$ and 1.90 atm ?

O $13.2 \mathrm{~g} / \mathrm{mol}$
O $0.0161 \mathrm{~g} / \mathrm{mol}$
O $16.1 \mathrm{~g} / \mathrm{mol}$
O $1.25 \mathrm{~g} / \mathrm{mol}$

$24 \quad 1$ point

Consider the following reaction:
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
For this reaction, 179.2 L of CO_{2} is collected at STP. How many moles of NaCl are also formed?
O 8.00 moles
O 32.0 moles
O 16.0 moles
O 12.5 moles

$25 \quad 1$ point

The analysis of a hydrocarbon revealed that it was $85.6281 \% \mathrm{C}$ and $14.3719 \% \mathrm{H}$ by mass. When 3.22 g of the gas was stored in a 1.2 L flask at $-190.842^{\circ} \mathrm{C}$, it exerted a pressure of 491 torr. What is the molecular formula of the hydrocarbon?
O $\mathrm{C}_{4} \mathrm{H}_{10}$
O $\mathrm{C}_{3} \mathrm{H}_{8}$
O $\mathrm{C}_{4} \mathrm{H}_{6}$
○ $\mathrm{C}_{2} \mathrm{H}_{4}$

