1 1point
The measurement $4.7 \times 10^{-3} \mathrm{~m}$ could also be written as．．．
O 4.7 mm
O 4.7 km
－ 4.7 Mm
○ 4.7 nm

21 point
The mole concept is important in chemistry because．．．
O it allows us to distinguish between elements and compounds．
O it provides a universally accepted standard for mass．
〇 it establishes a standard for reaction stoichiometry．
O it allows us to count atoms and molecules by weighing macroscopic amounts of material．

31 point
How many atoms of hydrogen are contained in 2 moles of methane $\left(\mathrm{CH}_{4}\right)$ ？
〇 2.41×10^{24} atoms
O 4 atoms
O 4.82×10^{24} atoms
O 1.20×10^{24} atoms
$4 \quad 1$ point
Which has the greatest number of hydrogen atoms？
O 20g of hydrogen gas
O 100 g of water
O 100 g of a substance that is $2 \% \mathrm{H}$ by mass
〇 10^{20} hydrogen atoms

51 point
Consider the following UNBALANCED chemical equation：
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
What is the coefficient for $\mathrm{H}_{2} \mathrm{O}$ when the reaction is balanced using the smallest possible
integers？
O 3
○ 6
○ 4
○ 2
$\bigcirc 1$

61 point
When aluminum metal is heated with manganese oxide，the following reaction occurs： $\mathrm{Al}+\mathrm{MnO}_{2} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Mn}$
Balance this equation．What is the sum of the coefficients of ALL species in the balanced chemical equation？
○ 12
○ 10
○ 7
○ 15

71 point
When the equation
$\mathrm{PbS}+\mathrm{O}_{2} \longrightarrow \mathrm{PbO}+\mathrm{SO}_{2}$
is balanced，the coefficients are \qquad respectively．
（2，3，2， 2
（1，2，3， 3
（1，2，1，1
○ $2,2,1,2$

81 point
Consider the UNBALANCED reaction below．
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NaOH} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Balance this equation using the smallest possible integers．What is the sum of the coefficients in the balanced equation？
○ 8
○ 12
○ 14
○ 6
○ 10

91 point
Which of the following has the greatest number of ATOMS？
O These all have the same number of atoms．
3.05 moles of CH_{4}

O 3.05 moles of argon
〇 3.05 moles of water

101 point
If 100.0 grams of copper（Cu）completely reacts with 25.0 grams of oxygen，how much copper（II）oxide（CuO）will form from 140.0 grams of copper and excess oxygen？（Note： CuO is the only product of this reaction．）
○ 175.0 g
O 35.00 g
○ 160.0 g
○ 210.0 g
$11 \quad 1$ point
Consider the following reaction:
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
If 12.50 g of iron (III) oxide (rust) are produced from 8.74 g of iron, how much oxygen gas
is needed for this reaction?
○ 3.76 g
○ 21.24 g
○ 8.74 g
〇 7.55 g

121 point
Upon heating, potassium chlorate produces potassium chloride and oxygen.
$2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
What mass of oxygen would be produced upon thermal decomposition of 25 g of
potassium chlorate $\left(\mathrm{KClO}_{3}\right)$? The molecular weight (MW) of potassium chlorate
is $122.5 \mathrm{~g} / \mathrm{mol}$.
○ 3.3 g
○ 9.8 g
○ 6.5 g
〇 4.9 g

$13 \quad 1$ point

Consider the following reaction:
$\mathrm{CO}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
How much oxygen is required to convert 35 g of CO into CO_{2} ?
○ 10 g
○ 35 g
○ 40 g
○ 20 g

141 point

Consider the following reaction:
$\mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}$
How many MOLECULES of NH_{3} can be produced from the reaction of 74.2 g of N_{2} and 14.0 moles of H_{2} ?

O 4.45×10^{24} molecules
O 3.19×10^{24} molecules
O 5.62×10^{24} molecules
O 1.26×10^{25} molecules

151 point
Consider the following reaction:
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
39.7 grams of $\mathrm{C}_{6} \mathrm{H}_{6}$ are allowed to react with 105.7 g of O_{2}. How much CO_{2} will be produced by this reaction?
○ 134.4 g
$\bigcirc 145.3 \mathrm{~g}$
○ 22.4 g
○ 116.3 g

