HW01 - Chemistry Fundamentals

1 point	6 1 point
The measurement 4.7 x 10 ⁻³ m could also be written as	When aluminum metal is heated with manganese oxide, the following reaction occurs:
O 4.7 mm	$AI + MnO_2 \longrightarrow AI_2O_3 + Mn$
O 4.7 km	Balance this equation. What is the sum of the coefficients of ALL species in the balanced chemical equation?
O 4.7 Mm	O 12
	O 10
O 4.7 nm	
	O 7
1 point	O 15
The mole concept is important in chemistry because	
O it allows us to distinguish between elements and compounds.	7 1 point
it provides a universally accepted standard for mass.	When the equation
it establishes a standard for reaction stoichiometry.	$PbS + O_2 \longrightarrow PbO + SO_2$ is balanced, the coefficients are, respectively.
it allows us to count atoms and molecules by weighing macroscopic amounts of	O 2, 3, 2, 2
material.	
	O 1, 2, 3, 3
1 point	O 1, 2, 1, 1
How many atoms of hydrogen are contained in 2 moles of methane (CH ₄)?	O 2, 2, 1, 2
	8 1 point
4 atoms	Consider the UNBALANCED reaction below.
O 4.82 x 10 ²⁴ atoms	$Al_2(SO_4)_3 + NaOH \longrightarrow Al(OH)_3 + Na_2SO_4$
O 1.20×10^{24} atoms	Balance this equation using the smallest possible integers. What is the sum of the coefficients in the balanced equation?
	O 8
	O 12
1 point Which has the prosteet number of budgeon stores?	9
Which has the greatest number of hydrogen atoms?	O 14
20g of hydrogen gas	O 6
100g of water	O 10
100g of a substance that is 2% H by mass	
O 10 ²⁰ hydrogen atoms	9 1 point
	Which of the following has the greatest number of ATOMS?
1 point	These all have the same number of atoms.
Consider the following UNBALANCED chemical equation:	O 3.05 moles of CH ₄
$Ca(OH)_2(aq) + H_3PO_4(aq) \longrightarrow Ca_3(PO_4)_2(s) + H_2O(l)$	3.05 moles of argon
What is the coefficient for H ₂ O when the reaction is balanced using the smallest possible	
integers?	3.05 moles of water
O 3	
0 6	10 1 point
O 4	If 100.0 grams of copper (Cu) completely reacts with 25.0 grams of oxygen, how much
O 2	copper (II) oxide (CuO) will form from 140.0 grams of copper and excess oxygen? (Note: CuO is the only product of this reaction.)
O 1	O 175.0 g
	O 35.00 g
	O 160.0 g
	O 210.0 g

1	1 point Consider the following reaction: $4\text{Fe}(s) + 3\text{O}_2(g) \longrightarrow 2\text{Fe}_2\text{O}_3(s)$ If 12.50 g of irron (III) oxide (rust) are produced from 8.74 g of irron, how much oxygen gas is needed for this reaction? 3.76 g 21.24 g 8.74 g 7.55 g
2	1 point Upon heating, potassium chlorate produces potassium chloride and oxygen. $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$ What mass of oxygen would be produced upon thermal decomposition of 25 g of potassium chlorate (KClO ₃)? The molecular weight (MW) of potassium chlorate is 122.5 g/mol. ○ 3.3 g ○ 9.8 g ○ 6.5 g ○ 4.9 g
3	1 point Consider the following reaction: $CO + O_2 \longrightarrow CO_2$ How much oxygen is required to convert 35 g of CO into CO_2 ? 10 g 35 g 40 g 20 g
4	$\begin{array}{l} 1 \text{ point} \\ \text{Consider the following reaction:} \\ N_2 + H_2 \longrightarrow \text{NH}_3 \\ \text{How many MOLECULES of NH}_3 \text{ can be produced from the reaction of 74.2 g of N}_2 \text{ and} \\ 14.0 \text{ moles of H}_2 ? \\ \hline O & 4.45 \times 10^{24} \text{ molecules} \\ \hline O & 3.19 \times 10^{24} \text{ molecules} \\ \hline O & 5.62 \times 10^{24} \text{ molecules} \\ \hline O & 1.26 \times 10^{25} \text{ molecules} \\ \hline \end{array}$
5	1 point Consider the following reaction: $C_6H_6 + O_2 \longrightarrow CO_2 + H_2O$ 39.7 grams of C_6H_6 are allowed to react with 105.7 g of O_2 . How much CO_2 will be produced by this reaction? 134.4 g 145.3 g 22.4 g 116.3 g