4 points
Match the term with the best pair:

4 points
What is the coefficient of lead (Pb) in the redox reaction after the following halfreactions are balanced?

$$
\begin{aligned}
& \mathrm{Pb} \longrightarrow \mathrm{~Pb}^{2+}+2 \mathrm{e}^{-} \\
& \mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}
\end{aligned}
$$

Type your answer...

4 points
What is the sum of coefficients in the redox reaction after the following half-reactions are balanced?

$$
\begin{aligned}
& \mathrm{Al} \longrightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \\
& \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}
\end{aligned}
$$

Type your answer...

4 points
In the reaction of thiosulfate ion with chlorine gas in an acidic solution, what is the reducing agent?

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq}) \longrightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
$$

$\bigcirc \mathrm{Cl}$
O $\mathrm{s}_{2} \mathrm{O}_{3}{ }^{2}$
(Cl_{2}
○ s^{2+}

4 points

Balance the following redox reaction in acidic conditions:

$$
\mathrm{Nb}+\mathrm{WO}_{4}^{2-} \rightleftharpoons \mathrm{NbO}_{2}+\mathrm{W}
$$

Choices below are the sum of reactant coefficients \longrightarrow sum of product coefficients followed by the total number of electrons transferred. Note that the sums do include any $\mathrm{H}_{2} \mathrm{O}$ and/or H^{+}you added. Pick the right choice.
○ $9 \longrightarrow 7,12 \mathrm{e}^{-}$
$8 \longrightarrow 10,6 \mathrm{e}^{-}$
($9 \longrightarrow 11,12 e^{-}$
○ $3 \longrightarrow 4,4 \mathrm{e}^{-}$
(12 $\longrightarrow 17,4 e^{-}$

- $9 \longrightarrow 11,4 \mathrm{e}^{-}$

〇 $12 \longrightarrow 17,12 \mathrm{e}^{-}$

64 points
What is the coefficient on H^{+}when you balance the following redox reaction in acid? Is H^{+}a product or reactant?

$$
\mathrm{MnO}_{4}^{-}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{MnO}_{2}+\mathrm{NO}_{3}^{-}
$$

O 4, product
O 0 , neither
O 6, product
O 2, reactant
O 3, product
O 6, reactant
O 4, reactant
O 3, reactant
O 2, product

74 points
Based on the push and pull of electrons in a redox reaction, it can be inferred that the species being oxidized is also the...
\bigcirc oxidizer
O reducing agent
〇 strong acid
\bigcirc oxidizing agent

84 points
What is the change in oxidation number of sulfur when SO_{3} reacts to form SO^{-}in a redox reaction?

Type your answer...

4 points
When $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reacts to form $\mathrm{Cr}(\mathrm{OH})_{3}$, the Cr atom gets \qquad and the change in oxidation number is equal to \qquad .

O reduced, -6

- reduced, -3
oxidized, -6
(reduced, +3
oxidized, +3

104 points
A methanol fuel source $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is burned to form CO_{2}. What is the change in oxidation number for carbon? Is this an oxidation or reduction reaction?

○ +2 , oxidation

- -1 , oxidation

○ +6 , oxidation
○ +6 , reduction
0 , this is not a redox half-reaction

- -1 , reduction
- +5 , oxidation
- +1 , oxidation

○ +1 , reduction

- -3 , reduction

114 points
What is the oxidation number of chlorine in ClO_{4}^{-}?
Type your answer...

122 points
What is the oxidation number of sulfur in SO_{4}^{2-} ?

Type your answer...

132 points
What is the oxidation number of an individual sulfur in thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$?
Type your answer...

142 points
What is the oxidation number of phosphorus in hydrogen phosphate, $\mathrm{HPO}_{4}{ }^{2-}$?

Type your answer...

152 points

In this electrochemical cell, what is the reduction half reaction?
○ $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(\mathrm{s})$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$
$\mathrm{Zn}(\mathrm{s}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
$\mathrm{Cu}(\mathrm{s}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$

162 points
Consider the cell reaction represented by the skeletal equation:

$$
\mathrm{Mn}(\mathrm{~s})+\mathrm{Ti}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{Ti}(\mathrm{~s})
$$

What is the proper cell diagram for this reaction?
○ $\mathrm{Ti}(\mathrm{s})\left|\mathrm{Ti}^{2+}(\mathrm{aq}) \| \mathrm{Mn}^{2+}(\mathrm{aq})\right| \mathrm{Mn}(\mathrm{s})$
$\bigcirc \mathrm{Mn}^{2+}(\mathrm{aq})|\mathrm{Mn}(\mathrm{s})||\mathrm{Ti}(\mathrm{s})| \mathrm{Ti}^{2+}(\mathrm{aq})$
○ $\mathrm{Mn}(\mathrm{s})\left|\mathrm{Mn}^{2+}(\mathrm{aq})\right|\left|\mathrm{Ti}^{2+}(\mathrm{aq})\right| \mathrm{Ti}(\mathrm{s})$
○ $\mathrm{Ti}^{2+}(\mathrm{aq})|\mathrm{Ti}(\mathrm{s})||\mathrm{Mn}(\mathrm{s})| \mathrm{Mn}^{2+}(\mathrm{aq})$

174 points
Consider the cell:
$\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(\mathrm{aq})\right|\left|\mathrm{Cl}^{-}(\mathrm{aq})\right| \mathrm{AgCl}(\mathrm{s}) \mid \mathrm{Ag}(\mathrm{s})$
Calculate E°.
○ +0.54 V
○ +1.20 V

- -1.20 V

O +0.98 V

184 points
In a working electrochemical cell (a voltaic or a battery), the cations in the salt bridge move toward the cathode.
O True
It depends on the charge of the cation.
O False
O It is impossible to tell unless we know if the cathode is "+" or "-".

194 points
What is the voltage of a standard voltaic cell made from the following half-reactions?

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \\
& \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}
\end{aligned}
$$

○ -2.70 V
2.70 V

O 2.02 V
○ -2.02 V
$20 \quad 2$ points
For the cell in the previous question, identify the solid anode and cathode.
Cu: anode Mg : cathode
O Cu : cathode Mg : anode

214 points
What is the voltage of a standard electrolytic cell made from the following halfreactions?

$$
\begin{gathered}
\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag} \\
\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}
\end{gathered}
$$

- -2.46 V
- -1.66 V
$-0.86 \mathrm{~V}$
2.46 V
0.86 V

224 points
Use the following table for the next three questions:
$\mathrm{F}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{~F}^{-}+2.87 \mathrm{~V}$
$\mathrm{Pb}^{4+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}^{2+}+1.67 \mathrm{~V}$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}+1.36 \mathrm{~V}$
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}+0.80 \mathrm{~V}$
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}+0.77 \mathrm{~V}$
$\mathrm{Cu}^{2+}+\rightleftharpoons \mathrm{Cu}+0.34 \mathrm{~V}$
$2 \mathrm{e}^{-}$
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \quad 0.000 \mathrm{~V}$
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}-0.04 \mathrm{~V}$
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}-0.13 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}-0.44 \mathrm{~V}$
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}-0.76 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}-1.66 \mathrm{~V}$
$\mathrm{Mg}^{2+}+\rightleftharpoons \mathrm{Mg}-2.36 \mathrm{~V}$
$2 \mathrm{e}^{-}$
$\mathrm{Li}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}-3.05 \mathrm{~V}$

Which out of the following is the strongest reducing agent?
$\bigcirc \mathrm{Ag}$
$\bigcirc \mathrm{Li}$
$\bigcirc \mathrm{Mg}$
$\bigcirc \mathrm{Li}^{+}$
○ Zn
$\bigcirc \mathrm{Ag}^{+}$

234 points
What is the standard cell potential for the strongest battery possible using the table?
Note: for this question, only compare standard cell potential to assess the strength of the battery.
3.05 V

○ 2.87 V
0.00 V
5.92 V

244 points
If you wanted to spontaneously reduce Al^{3+} to form Al , you should pair it with...
O the oxidation of Mg
\bigcirc the oxidation of Pb
〇 the S.H.E reaction
O the reduction of Mg

254 points
n a voltaic cell...
O oxidation takes place at the cathode
electrical energy is used to reverse spontaneous chemical reactions

- oxidation and reduction take place at the same time, but at different electrodes
- electrolytes are added to carry electrons between electrodes

264 points
A discharging battery is a voltaic cell, meaning it is...
Onn-spontaneous with a negative cell potential
〇 spontaneous with a negative cell potential
O non-spontaneous with a positive cell potential

- spontaneous with a positive cell potential

274 points
Suppose you set up an electrochemical cell. In one beaker, you have a 1 M copper(II) ion solution with a copper metal electrode. You use an external wire to connect the copper electrode to an aluminum electrode in another beaker with a 1 M aluminum ion solution. Then you add a salt bridge with sodium sulfate ions. All things are in place to have a functional cell. Which of the following statements is FALSE?

Without a power source, electrons will travel from the aluminum beaker to the copper beaker

O You can run this as a voltaic cell and get out a maximum of 2.00 V
O Nothing will happen until you add an external power source.
You can run this as an electrolytic cell only if you input a minimum of 2.00 V

284 points
The two half-reactions are arranged with the intention to reduce AU:

$$
\begin{aligned}
& \mathrm{Au}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Au} \\
& \mathrm{Li}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}
\end{aligned}
$$

What reaction is occurring at the anode?
$\bigcirc \mathrm{Au}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Au}$
$\bigcirc \mathrm{Li}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}$
$\bigcirc \mathrm{Li} \rightleftharpoons \mathrm{Li}^{+}+\mathrm{e}^{-}$
$\bigcirc \mathrm{Au} \rightleftharpoons \mathrm{Au}^{+}+\mathrm{e}^{-}$

