17 points
Select all seven strong acids below：
$\square \mathrm{HF}$
HClHI
HBr
$\mathrm{H}_{2} \mathrm{SO}_{4}$
HAt
HClO_{4}
$\square \mathrm{HNO}_{3}$
$\square \mathrm{NaOH}$
$\square \mathrm{HClO}$
$\square \mathrm{HClO}_{3}$

25 points
What is the pH of a 0.044 M HI solution？
Note：Report your answer to two sig figs（pH＝X．XX）
Type your answer．．．

35 points

What is the $[\mathrm{OH}]$ when 0.0023 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ are placed in 654 mL water？Assume complete dissociation of $\mathrm{Ca}(\mathrm{OH})_{2}$ ．
0.0035 M

○ .0070 M
○ 2.15 M
O $3.5 \times 10^{-6} \mathrm{M}$
○ 12.0 M

45 points
Use the data here to rank the following weak acids from weakest to strongest．
HIO
$\mathrm{CH}_{3} \mathrm{COOH}$
HCN
HF
HNO_{2}
〇 $\mathrm{HIO}<\mathrm{HCN}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HNO}_{2}<\mathrm{HF}$
O $\mathrm{HCN}<\mathrm{HIO}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HNO}_{2}<\mathrm{HF}$
O $\mathrm{HNO}_{2}<\mathrm{HF}<\mathrm{HIO}<\mathrm{HCN}<\mathrm{CH}_{3} \mathrm{COOH}$
O $\mathrm{HF}<\mathrm{HNO}_{2}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCN}<\mathrm{HIO}$

5 points

A 0.5 M sample of a weak acid， HA_{1} ，has a $\mathrm{pH}=4.24$ ． A 0.5 M sample of another weak acid， HA_{2} ，has a $\mathrm{pH}=5.66$ ．Which weak acid has the larger K_{a} value？
○ HA_{2}
$\bigcirc \mathrm{HA}_{1}$
O Both will have the same value of K_{a}
$6 \quad 5$ points
The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration．What is the pH ？
Note：Report your answer to two sig figs（pH＝X．XX）
Type your answer．．．

72 points
Which of the following represents a generic neutralization reaction of a strong acid and strong base？
O Acid＋Base \rightarrow Salt＋Water
O Acid + Base \rightarrow Weak Base + Water
〇 Acid + Base \rightarrow Weak Acid + Water
O Acid + Base \rightarrow Acid + Water
O Acid + Water \rightarrow Base + Salt
O Base + Water \rightarrow Acid + Salt

85 points
Consider the classic strong acid／base neutralization reaction of hydrochloric acid（ HCl ） and sodium hydroxide (NaOH) from HW 01.
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$
How many mL of 0.0448 M NaOH are needed to neutralize 32.0 mL of 0.0291 M HCl ？
〇 36.3 mL
○ 20.8 mL
○ 24.8 mL
○ 33.7 mL
○ 27.1 mL
○ 49.3 mL

95 points

A titration experiment is set up to fully neutralize a strong acid（ HCl ）using a strong base (NaOH) ．The HCl has a concentration of 0.01 M and a volume of 100 mL ．The NaOH also has a concentration of 0.01 M ．What volume of NaOH is needed to fully neutralize the HCl？
○ 50 mL
○ 200 mL
○ 100 mL
○ 250 mL
○ 20 mL
○ 500 mL
$10 \quad 5$ points
Barium hydroxide is a strong base that dissociates based on the following reaction： $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
What volume of 0.005 M HCl （strong acid）is needed to fully neutralize a 500 mL 0.005 M $\mathrm{Ba}(\mathrm{OH})_{2}$ solution？
○ 1.00 L
○ 500 mL
－ 1.00 mL
○ 750 mL
○ 250 mL
○ 2.50 L

112 points
What is the pH at the equivalence point of a titration involving a strong acid titrant and strong base analyte?
O $\mathrm{pH}=7$
O $\mathrm{pH}<7$
○ $\mathrm{pH}>7$

122 points
What is the pH at the equivalence point of a titration involving a strong acid titrant and a weak base analyte?
O $\mathrm{pH}=7$
○ $\mathrm{pH}<7$
O $\mathrm{pH}>7$

132 points
What is the pH at the equivalence point of a titration involving a strong base titrant and a weak acid analyte?

O $\mathrm{pH}>7$
O $\mathrm{pH}=7$
○ $\mathrm{pH}<7$

145 points
A titration is performed to determine the concentration of a HClO weak acid solution. It takes 12.84 mL 0.1205 M LiOH to neutralize 56.84 mL HCIO. What is the concentration (in M) of the original HClO solution? Report your answer to 4 decimal places.

Type your answer...

155 points
Neutralizing an olympic size swimming pool is conceptually very similar to performaing a massive titration experiment. Suppose a 700 thousand gallon swimming pool has a $\mathrm{pH}=$ 9.33 which is a bit too high for swimming. Calculate how many gallons of 10 M HCl (strong acid) it will take to neutralize the swimming pool to $\mathrm{pH}=7$. Report your answer to exactly 2 significant figures.

Type your answer...

165 points
What atmospheric component is responsible for the natural acidity of rain?
O Carbon dioxide
O Sulfuric acid
\bigcirc Ozone
Oxygen

175 points
Which two methods can be used to make sea water drinkable?distillationosmosisreverse osmosisflocculation

185 points
The pH of rain water falling through an unpolluted atmosphere is closest to...
○ 4.8
○ 5.4
○ 7.0
○ 8.7

195 points
Most aquatic life in lakes cannot survive in water with a pH less than...
○ 5
○ 7
○ 8
○ 14

205 points
The acid neutralizing capacity of a lake or stream most often derives from the presence of ________ in the surrounding soil or rock.
$\bigcirc \mathrm{CaCO}_{3}$
$\bigcirc \mathrm{HNO}_{3}$
$\bigcirc \mathrm{NaOH}$

- $\mathrm{H}_{3} \mathrm{O}^{+}$

215 points
It takes 13.7 mL 1.50 M NaOH to neutralize a 150 mL weak acid solution. How many moles of weak acid were in the original weak acid solution?
0.137 moles

- 109 moles
- 1.37 moles
0.225 moles

O 3.08 moles
0.0206 moles

225 points
When Lake Travis is full, it holds about 369 billion gallons. If we pretend that Lake Travis has a neutral $\mathrm{pH}(\mathrm{pH}=7)$, approximately how many moles of H^{+}are present in the lake? $1 \mathrm{gal}=3.785 \mathrm{~L}$

O 1.40×10^{5} moles
O 3.69×10^{4} moles
O 3.69×10^{9} moles
O 1.39×10^{8} moles

- 138 moles

O 4.65×10^{8} moles
O 1.00×10^{-7} moles

