1 7 points	6 5 points
Select all seven strong acids below:	The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M
HF	concentration. What is the pH? Note: Report your answer to two sig figs (pH = X.XX)
HCI	Type your answer
HI	Type you unitro
HBr	
H ₂ SO ₄	7 2 points
HAt	Which of the following represents a generic neutralization reaction of a strong acid and strong base?
HCIO ₄	O Acid + Base → Salt + Water
HNO ₃	O Acid + Base → Weak Base + Water
NaOH	O Acid + Base→ Weak Acid + Water
HCIO	O Acid + Base → Acid + Water
HCIO ₃	O Acid + Water → Base + Salt
	O Base + Water → Acid + Salt
2 5 points	
What is the pH of a 0.044 M HI solution?	8 5 points
Note: Report your answer to two sig figs (pH = X.XX)	Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCl) and sodium hydroxide (NaOH) from HW 01.
Type your answer	HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H ₂ O(ℓ)
	How many mL of 0.0448 M NaOH are needed to neutralize 32.0 mL of 0.0291 M HCl?
3 5 points	O 36.3 mL
What is the [OH] when 0.0023 moles of Ca(OH) ₂ are placed in 654 mL water? Assume	O 20.8 mL
complete dissociation of Ca(OH) ₂ .	O 24.8 mL
O 0.0035 M	33.7 mL
O .0070 M	O 27.1 mL
O 2.15 M	O 49.3 mL
O 3.5 x 10 ⁻⁶ M	
O 12.0 M	9 5 points
	A titration experiment is set up to fully neutralize a strong acid (HCI) using a strong base
4 5 points	(NaOH). The HCl has a concentration of 0.01 M and a volume of 100 mL. The NaOH also has a concentration of 0.01 M. What volume of NaOH is needed to fully neutralize the
Use the data <u>here</u> to rank the following weak acids from weakest to strongest .	HCI?
HIO	O 50 mL
CH₃COOH HCN	O 200 mL
HF HNO	O 100 mL
HNO ₂	O 250 mL
O HIO < HCN < CH ₃ COOH < HNO ₂ < HF	O 20 mL
O HCN< HIO < CH ₃ COOH < HNO ₂ < HF	O 500 mL
O HNO ₂ < HF < HIO < HCN < CH ₃ COOH	
O HF < HNO ₂ < CH ₃ COOH < HCN < HIO	10 5 points
	Barium hydroxide is a strong base that dissociates based on the following reaction:
	Ba(OH) ₂ (aq) \rightarrow Ba ²⁺ (aq) + 2OH ⁻ (aq) What volume of 0.005 M HCl (strong acid) is needed to fully neutralize a 500 mL 0.005 M
5 5 points $A 0.5 \text{ M sample of a weak acid HA. has a nH = 4.24 A 0.5 M sample of another weak}$	Ba(OH) ₂ solution?
A 0.5 M sample of a weak acid, HA ₁ , has a pH = 4.24. A 0.5 M sample of another weak acid, HA ₂ , has a pH = 5.66. Which weak acid has the larger K_a value?	O 1.00 L
O HA ₂	O 500 mL
O HA ₁	O 1.00 mL
O Both will have the same value of K_a	O 750 mL
Soc. Will have the same value of Ng	O 250 mL
	O 2.50 L

2 points What is the pH at the equivalence point of a titration involving a strong acid titrant and strong base analyte? pH = 7 pH < 7 pH > 7	The pH of rain water falling through an unpolluted atmosphere is closest to 4.8 5.4 7.0 8.7
2 points What is the pH at the equivalence point of a titration involving a strong acid titrant and a weak base analyte? pH = 7 pH < 7 pH > 7	5 points Most aquatic life in lakes cannot survive in water with a pH less than 5 7 8 14
What is the pH at the equivalence point of a titration involving a strong base titrant and a weak acid analyte? O pH > 7 O pH = 7 O pH < 7	The acid neutralizing capacity of a lake or stream most often derives from the presence of in the surrounding soil or rock. CaCO ₃ HNO ₃ NaOH H ₃ O ⁺
A titration is performed to determine the concentration of a HClO weak acid solution. It takes 12.84 mL 0.1205 M LiOH to neutralize 56.84 mL HClO. What is the concentration (in M) of the original HClO solution? Report your answer to 4 decimal places. Type your answer Type your answer 5 points Neutralizing an olympic size swimming pool is conceptually very similar to performaing a massive titration experiment. Suppose a 700 thousand gallon swimming pool has a pH = 9.33 which is a bit too high for swimming. Calculate how many gallons of 10 M HCl (strong acid) it will take to neutralize the swimming pool to pH = 7. Report your answer to exactly 2 significant figures. Type your answer	21 5 points It takes 13.7 mL 1.50 M NaOH to neutralize a 150 mL weak acid solution. How many moles of weak acid were in the original weak acid solution? O 0.137 moles O 1.97 moles O 0.225 moles O 3.08 moles O 0.0206 moles
What atmospheric component is responsible for the natural acidity of rain? Carbon dioxide Sulfuric acid Ozone Oxygen	When Lake Travis is full, it holds about 369 billion gallons. If we pretend that Lake Travis has a neutral pH (pH = 7), approximately how many moles of H $^+$ are present in the lake? 1 gal = 3.785 L O 1.40×10^5 moles O 3.69×10^4 moles O 3.69×10^9 moles
5 points Which two methods can be used to make sea water drinkable? distillation osmosis reverse osmosis flocculation	 1.39 x 10⁸ moles 138 moles 4.65 x 10⁸ moles 1.00 x 10⁻⁷ moles