

O $186 \mathrm{k} / \mathrm{mmol}$
O $-246 \mathrm{~kJ} / \mathrm{m}$

	O	$1241 \mathrm{k} / \mathrm{mol}$
		$-183 \mathrm{~K} / \mathrm{mol}$

O	$-183 \mathrm{k} / \mathrm{mol}$
O	$850 \mathrm{k} / \mathrm{mol}$

O $-1469 \mathrm{k} / \mathrm{mol}$

\section*{- $143 \mathrm{k} / \mathrm{s}$ \\ \\ | | $-572 \mathrm{k} / \mathrm{k} / \mathrm{g}$ |
| :--- | :--- | \\ ○ $-7.1 .5 \mathrm{k} / \mathrm{g}$ \\ 7 bpoints

wWich of the for
O wood
O octane
0 metthene
O hydroger}

Whants the ealue of heat fow for the combustion of hydrogen in K / s ? 2 H ' for this process is
$\mathrm{O}^{\mathrm{cos}}$
Whatis the more efficient method to treaka a high molar mass fraction from a cunde oil refinery
down to a specifictue? $\stackrel{\text { downt toa specir }}{0} \mathrm{reforming}$
\bigcirc O tractional distilation

"

 Type youranswer...
15
ponis Whit the heart reauried to folly melt the ice ato 0 c: Answer in joules to the Type your answer..
 TTpe youranswer..
 Type vour answer..

O
O
O
66310 J

