HW03 - Electrochemistry

Question 1			4 pts
Match the term with the best pair:			
reducing agent	[Choose]	\$	
oxidizing agent	[Choose]	\$	
reduction	[Choose]	\$	
oxidization	[Choose]	÷	

Question 2

What is the coefficient of lead (Pb) in the redox reaction after the following half-reactions are balanced?

4 pts

 $Pb \longrightarrow Pb^{2+} + 2e^{-}$ $Fe^{3+} + 3e^{-} \longrightarrow Fe$

Question 3 4 pts
What is the sum of coefficients in the redox reaction after the following half-reactions are balanced?
$AI \longrightarrow AI^{3+} + 3e^{-}$
Cu²++ 2e⁻→ Cu

Question 4	4 pts
In the reaction of thiosulfate ion with chlorine gas in an acidic solution, what is the reducing agent?	
$Cl_2(g) + S_2O_3^{2-}(aq) \longrightarrow Cl^-(aq) + SO_4^{2-}(aq)$	
⊖ CI	
○ S ²⁺	
○ S ₂ O ₃ ²⁻	
◯ Cl ₂	

Qu	es	tio	n	5
_				-

What is the coefficient on H^+ when you balance the following redox reaction in acid? Is H^+ a product or reactant?

	$MnO_4^- + NO_2^- \rightarrow MnO_2 + NO_3^-$
6, product	
O, neither	
4, reactant	
3, product	
6, reactant	
3, reactant	
2, product	
4, product	
2, reactant	

Question 6

4 pts

4 pts

Based on the push and pull of electrons in a redox reaction, it can be inferred that the species being oxidized is also the...

- reducing agent
- oxidizing agent
- strong acid

\bigcirc	oxidizer
------------	----------

Question 7

4 pts

4 pts

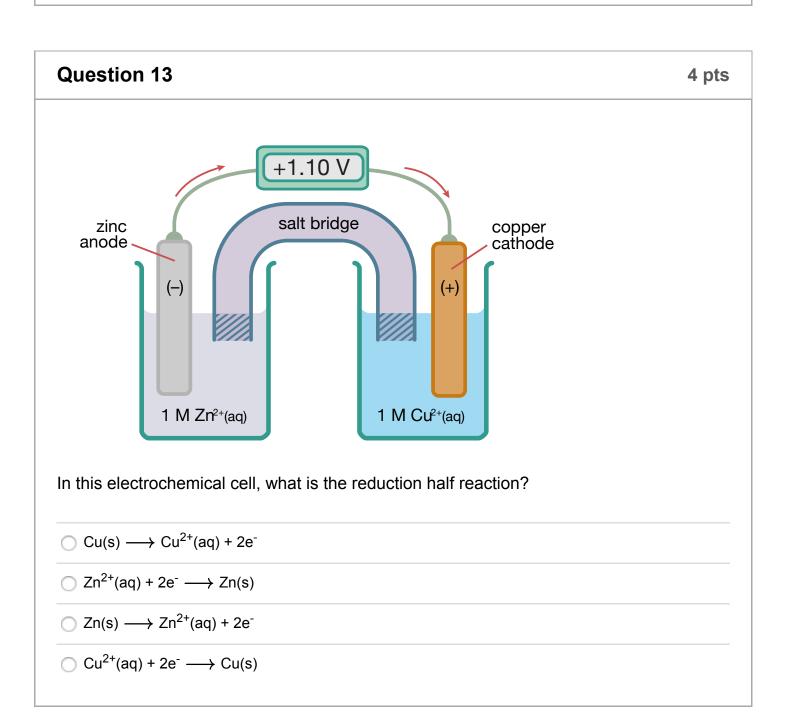
4 pts

What is the change in oxidation number of sulfur when SO_3 reacts to form SO^- in a redox reaction?

Question 8

When Na₂Cr₂O₇ reacts to form Cr(OH)₃, the Cr atom gets _____ and the change in oxidation number is equal to ____.

oxidized, +3
oxidized, -6
reduced, -6
reduced, -3


Question 9	4 pts
What is the oxidation number of chlorine in ClO ₄ -?	

Question 10

What is the oxidation number of sulfur in SO_4^{2-} ?

Question 11 4	pts
What is the oxidation number of an individual sulfur in thiosulfate, $S_2O_3^{2-2}$?	

Question 12	4 pts
What is the oxidation number of phosphorus in hydrogen phosphate, $\mathrm{HPO_4}^{2-2}$?	

Question 14

Consider the cell reaction represented by the skeletal equation:

$Mn(s) + Ti^{2+}(aq) \longrightarrow Mn^{2+}(aq) + Ti(s)$

What is the proper cell diagram for this reaction?

4 pts

- Ti(s) | Ti²⁺(aq) || Mn²⁺(aq) | Mn(s)
- Mn(s) | Mn²⁺(aq) || Ti²⁺(aq) | Ti(s)
- Mn²⁺(aq) | Mn(s) || Ti(s) | Ti²⁺(aq)
- ─ Ti²⁺(aq) | Ti(s) || Mn(s) | Mn²⁺(aq)

Question 15

Consider the cell:

 $Zn(s) | Zn^{2+}(aq) || Cl^{-}(aq) | AgCl(s) | Ag(s)$ Calculate E°.

🔵 +1.20 V

- 🔘 -1.20 V
- 🔿 +0.54 V
- 🔘 +0.98 V

Question 16

In a working electrochemical cell (a voltaic or a battery), the cations in the salt bridge move toward the cathode.

 It depends on the charge of the cation.
O False
It is impossible to tell unless we know if the cathode is "+" or "-".
◯ True

Question 17

What is the voltage of a standard voltaic cell made from the following half-reactions? $Cu^{2+} + 2e^{-} \rightarrow Cu$ $Mg^{2+} + 2e^{-} \rightarrow Mg$ $-2.02 \vee$ $2.02 \vee$ $2.70 \vee$ $-2.70 \vee$

For the cell in the previous question, identify the solid anode and cathode.

- Cu: anode
 Mg: cathode
 Cu: cathode
- Mg: anode

Question 19

4 pts

4 pts

What is the voltage of a standard electrolytic cell made from the following half-reactions?

$$Ag^+ + e^- \rightarrow Ag$$

$$AI^{3+} + 3e^{-} \rightarrow AI$$

2.46 V
-2.46 V
-0.86 V
0.86 V

🔿 -1.66 V

Question 20

Use the following table for the next three questions:

F ₂ + 2e ⁻	\rightleftharpoons	2F ⁻	+2.87 V
Pb ⁴⁺ +2e ⁻	i ⇒ Pb ²	2+	+1.67 V
Cl ₂ + 2e ⁻	≓ 2C	I–	+1.36 V
Ag⁺ + e⁻	\rightleftharpoons	Ag	+0.80 V
Fe ³⁺ + e [−]	≓ Fe ²	<u>2</u> +	+0.77 V

4 pts

4 pts

4 pts

4 pts

20			
2H⁺ + 2e [−]	\rightleftharpoons	H_2	0.000 V
Fe ³⁺ + 3e ⁻	≓	Fe	-0.04 V
Pb ²⁺ + 2e ⁻	⇒	Pb	-0.13 V
Fe ²⁺ + 2e ⁻	\\	Fe	-0.44 V
Zn ²⁺ + 2e ⁻	⇒	Zn	-0.76 V
Al ³⁺ + 3e ⁻	\rightleftharpoons	AI	-1.66 V
Mg ²⁺ + 2e ⁻	⇒	Mg	-2.36 V
Li⁺ + e ⁻	\rightleftharpoons	Li	-3.05 V

Which out of the following is the strongest reducing agent?

⊖ Li⁺			
O Mg			
🔿 Ag			
🔿 Zn			
🔿 Li			
◯ Ag⁺			

Question 21

4 pts

4 pts

What is the standard cell potential for the strongest battery possible using the table? Note: for this question, only compare standard cell potential to assess the strength of the battery.

🔘 0.00 V	
🔿 5.92 V	
🔿 2.87 V	

🔿 3.05 V

Question 22	4 pts
If you wanted to spontaneously reduce Al ³⁺ to form Al, you should pair it with	

the oxidation of Mg

the S.H.E reaction

the oxidation of Pb

the reduction of Mg

Question 23 4 pts

In a voltaic cell...

oxidation takes place at the cathode

electrolytes are added to carry electrons between electrodes

electrical energy is used to reverse spontaneous chemical reactions

O oxidation and reduction take place at the same time, but at different electrodes

Question 24

A discharging battery is a voltaic cell, meaning it is...

on non-spontaneous with a negative cell potential

Spontaneous with a negative cell potential

spontaneous with a positive cell potential

non-spontaneous with a positive cell potential

Question 25	4 pts

Suppose you set up an electrochemical cell. In one beaker, you have a 1 M copper(II) ion solution with a copper metal electrode. You use an external wire to connect the copper electrode to an aluminum electrode in another beaker with a 1 M aluminum ion solution. Then you add a salt bridge with sodium sulfate ions. All things are in place to have a functional cell. Which of the following statements is FALSE?

Nothing will happen until you add an external power source.

 \bigcirc You can run this as an electrolytic cell only if you input a minimum of 2.00 V

O Without a power source, electrons will travel from the aluminum beaker to the copper beaker

 \bigcirc You can run this as a voltaic cell and get out a maximum of 2.00 V