HW02 - Water, Acids & Bases II

Question 1	7 pts
Select all seven strong acids below:	
□ HF	
□ HBr	
\square H ₂ SO ₄	
HAt	
□ HNO ₃	
□ NaOH	

Question 2

What is the pH of a 0.044 M HI solution? Note: Report your answer to two sig figs (pH = X.XX)

Question 3

What is the [OH⁻] when 0.0023 moles of Ca(OH)₂ are placed in 654 mL water? Assume complete dissociation of Ca(OH)₂.

🔘 0.0035 M

○ .0070 M

○ 2.15 M

◯ 3.5 x 10⁻⁶ M

🔵 12.0 M

Question 4	5 pts
Use the data <u>here (https://gchem.cm.utexas.edu/data/section2.php?target=ka-kb-</u> <u>constants.php)</u> to rank the following weak acids from weakest to strongest .	
HIO	
CH₃COOH	
HCN	
HF	
HNO ₂	
\bigcirc HIO < HCN < CH ₃ COOH < HNO ₂ < HF	
\bigcirc HCN< HIO < CH ₃ COOH < HNO ₂ < HF	
\bigcirc HNO ₂ < HF < HIO < HCN < CH ₃ COOH	
\bigcirc HF < HNO ₂ < CH ₃ COOH < HCN < HIO	

5 pts

5 pts

A 0.5 M sample of a weak acid, HA₁, has a pH = 4.24. A 0.5 M sample of another weak acid, HA₂, has a pH = 5.66. Which weak acid has the larger K_a value?

- \bigcirc HA₂
- O HA₁
- \bigcirc Both will have the same value of K_a

Question 6

The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration. What is the pH?

Note: Report your answer to two sig figs (pH = X.XX)

Question 7

3 pts

5 pts

Which of the following represents a generic neutralization reaction of a strong acid and strong base?

 \bigcirc Acid + Base \rightarrow Salt + Water

 \bigcirc Acid + Base \rightarrow Weak Base + Water

 \bigcirc Acid + Base \rightarrow Weak Acid + Water

 \bigcirc Acid + Base \rightarrow Acid + Water

 \bigcirc Acid + Water \rightarrow Base + Salt

 \bigcirc Base + Water \rightarrow Acid + Salt

5 pts

Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCI) and sodium hydroxide (NaOH) from HW 01.

$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(\ell)$

How many mL of 0.0448 M NaOH are needed to neutralize 32.0 mL of 0.0291 M HCl ?

○ 36.3 mL	
○ 20.8 mL	
○ 24.8 mL	
○ 33.7 mL	
○ 27.1 mL	
○ 49.3 mL	

Question 9	5 pts
A titration experiment is set up to fully neutralize a strong acid (HCI) using a strong (NaOH). The HCI has a concentration of 0.01 M and a volume of 100 mL. The NaO has a concentration of 0.01 M. What volume of NaOH is needed to fully neutralize t HCI?	H also
○ 50 mL	
○ 200 mL	
○ 100 mL	
○ 250 mL	
○ 20 mL	
○ 500 mL	

Question 10

Barium hydroxide is a strong base that dissociates based on the following reaction:

$BaOH_2(aq) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$

What volume of 0.005 M HCl (strong acid) is needed to fully neutralize a 500 mL 0.005 M Ba(OH)₂ solution?

○ 1.00 L	
○ 500 mL	
○ 1.00 mL	
○ 750 mL	
○ 250 mL	
○ 2.50 L	

Question 11

What is the pH at the equivalence point of a titration involving a strong acid titrant and strong base analyte?

○ pH = 7

○ pH < 7

○ pH > 7

Question 12

What is the pH at the equivalence point of a titration involving a strong acid titrant and a weak base analyte?

○ pH = 7

○ pH < 7</p>

○ pH > 7

Question 13

What is the pH at the equivalence point of a titration involving a strong base titrant and a weak acid analyte?

○ pH > 7			
○ pH = 7			
○ pH < 7			

Question 14

Neutralizing an olympic size swimming pool is conceptually very similar to performaing a massive titration experiment. Suppose a 700 thousand gallon swimming pool has a pH = 9.33 which is a bit too high for swimming. Calculate how many gallons of 10 M HCl (strong acid) it will take to neutralize the swimming pool to pH = 7. Report your answer to exactly 2 significant figures.

Question 15	5 pts
What atmospheric component is responsible for the natural acidity of rain?	
O Carbon dioxide	
◯ Sulfuric acid	

5 pts

5 pts

5 pts

5 pts

Ozone

Question 16

Which two methods can be used to make sea water drinkable?

- distillation
- osmosis
- reverse osmosis
- flocculation

Question 17

The pH of rain water falling through an unpolluted atmosphere is closest to... 4.8 5.4 7.0 8.7

Question 19	5 pts
The acid neutralizing capacity of a lake or stream most often derives from the prese of in the surrounding soil or rock.	ence
○ CaCO ₃	
O HNO ₃	
○ NaOH	
O H₃O⁺	

Question 20

When Lake Travis is full, it holds about 369 billion gallons. If we pretend that Lake Travis has a neutral pH (pH = 7), approximately how many moles of H^+ are present in the lake? 1 gal = 3.785 L

 1.40×10^5 moles

 3.69×10^4 moles

 3.69×10^9 moles

 1.39×10^8 moles

 138 moles

 4.65×10^8 moles

 1.00×10^{-7} moles

5 pts

5 pts