1																	18
${ }^{1} \underset{1.008}{\mathrm{H}}$	2											13	14	15	16	17	${ }^{2} \mathrm{He}$
$\int_{6.941}^{3}$	${ }^{4} \mathrm{Be}$											${ }^{5}{ }_{10}{ }^{\text {B }}$	${ }_{12}^{6}$ C	${ }^{7}{ }_{14.01}$	${ }^{8} \underset{16.00}{\mathrm{O}}$	${ }_{19}^{9} \underset{19.00}{ }$	$\stackrel{10}{\mathrm{Ne}}$
$\begin{array}{\|c} \hline 11 \\ \mathrm{Na} \\ 22.99 \end{array}$	$\begin{array}{\|l} \hline 12 \\ \mathrm{Mg} \\ 24.31 \end{array}$	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	$\begin{array}{\|c} 14 \\ \mathrm{Si}_{28.09} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 15 \\ P \\ \hline 30.97 \end{array}$	$\stackrel{16}{\mathrm{~S}} \underset{32.07}{ }$	${ }^{17}{ }^{17} \mathrm{Cl}$	$\begin{array}{\|c} 18 \\ \mathrm{Ar} \\ 39.95 \end{array}$
$\begin{gathered} 19 \\ \mathrm{~K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{array}{\|c} 21 \\ \mathrm{Sc} \\ 44.96 \end{array}$	$\begin{array}{\|c} 22 \\ \mathrm{Ti} \\ 47.87 \end{array}$	$\stackrel{23}{V}_{50.94}$	${ }^{24} \mathrm{Cr}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \\ & 5101 \end{aligned}$	$\stackrel{26}{\mathrm{Fe}}$	${ }^{27} \mathrm{Co}$	$\stackrel{28}{\mathrm{Ni}_{58.69}}$	${ }_{6}^{29}$	$\begin{array}{\|c\|} \hline 30 \\ \mathrm{Zn} \\ 65 \end{array}$	31 $G a$ 69.72	$\begin{gathered} 32 \\ \mathrm{Ge} \end{gathered}$	$\begin{array}{\|c} 33 \\ \text { As } \end{array}$	$\stackrel{34}{5}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.80 \end{gathered}$
37	$\begin{array}{\|c\|} \hline 38 \\ \mathrm{Sr} \\ \hline 87.62 \\ \hline \end{array}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ 88 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.22 \end{gathered}$	$\begin{array}{\|c} \hline 41 \\ \mathrm{Nb} \\ 92.91 \end{array}$	$\begin{array}{\|l\|} \hline 42 \\ \text { Mo } \\ 95.94 \end{array}$	$\stackrel{43}{\mathrm{TC}}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ \mathrm{Ru} \\ \hline 10.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathrm{Rh}_{102.91} \end{gathered}$	$\begin{gathered} 46 \\ \mathrm{Pd} \\ 106.42 \end{gathered}$	$\begin{array}{\|c} \mathrm{AF}_{\mathrm{Ag}}{ }_{107.87} \end{array}$	${ }_{112.41}^{\mathrm{C}}$	$\begin{gathered} \mathbf{4 n}_{114.82} \\ { }_{10} \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ 118.71 \end{gathered}$	$\begin{array}{\|c\|} \hline 51 \\ \text { Sb } \\ 121.76 \\ \hline \end{array}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\stackrel{53}{\mathrm{~S}_{126.90}}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
$\begin{array}{\|c} \hline 55 \\ \mathrm{Cs} \\ \hline 132.91 \\ \hline \end{array}$	$\begin{gathered} 56 \\ \mathrm{Ba} \end{gathered}$ $\begin{array}{\|l\|} \hline 137.33 \\ \hline \end{array}$	$\begin{gathered} 57 \\ \mathrm{La} \\ 138.91 \end{gathered}$	$\begin{array}{\|c} \hline 72 \\ \mathrm{Hf}_{178.49} \end{array}$	$\begin{array}{\|l\|} \hline 73 \\ \hline 180 \\ \hline 180.95 \end{array}$	$\begin{array}{\|c\|c} \hline 74 \\ \mathrm{~W} \\ \hline 183.84 \\ \hline \end{array}$	$\begin{gathered} 75 \\ R e \end{gathered}$ 186.21	$\begin{gathered} 76 \\ \text { Os } \\ 190.23 \end{gathered}$	$\begin{gathered} 77 \\ \text { Ir } \\ 192.22 \end{gathered}$	$\stackrel{7}{78}_{\mathrm{Pt}_{195.08}}$	$\begin{array}{\|c} \hline \mathrm{Au} \\ \mathrm{Au}_{19697} \end{array}$	$\begin{array}{\|c} 80 \\ \mathrm{Hg} \\ 200.59 \end{array}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ 204.38 \end{gathered}$	$\begin{array}{\|c\|} \hline 82 \\ \mathrm{~Pb} \\ 207.20 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 83 \\ \mathrm{Bi} \\ 208.98 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 84 \\ \mathrm{Po} \\ (209) \end{array}$	$\begin{array}{\|c} 85 \\ \mathrm{At} \\ (210) \end{array}$	$\begin{array}{\|c} \hline 86 \\ R n \\ (222) \\ \hline \end{array}$
$\begin{array}{\|c} 87 \\ \mathrm{Fr} \\ (223) \end{array}$	$\stackrel{88}{8} \mathrm{Ra}$ (226)	$\begin{array}{\|c} 89 \\ \text { Ac } \end{array}$ (227)	$\begin{array}{\|c} 104 \\ \mathrm{Rf}_{(267)} \\ \hline \end{array}$	$\begin{gathered} \hline 105 \\ \mathrm{Db} \\ (268) \\ \hline \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (269 \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \\ (270) \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ (270) \end{gathered}$	$\begin{gathered} \hline 109 \\ \mathrm{Mt} \\ (278) \end{gathered}$	$\begin{array}{\|c} \hline 110 \\ \text { Ds } \\ (281) \end{array}$	$\begin{gathered} 111 \\ \mathrm{Rg} \end{gathered}$	$\begin{gathered} 112 \\ \mathrm{Cn} \\ (285) \end{gathered}$	$\begin{gathered} 113 \\ \mathrm{Nh} \\ (286) \end{gathered}$	$\begin{gathered} 114 \\ \mathrm{FI} \\ (289) \end{gathered}$	$\begin{gathered} 115 \\ \mathrm{Mc} \\ \text { (290) } \\ \hline \end{gathered}$	$\begin{gathered} 116 \\ \mathrm{Lv} \\ (293) \end{gathered}$	$\begin{gathered} 117 \\ \text { Ts } \\ \text { (294) } \end{gathered}$	$\begin{gathered} 118 \\ \mathrm{Og} \\ (294) \end{gathered}$

$\stackrel{58}{\mathrm{Ce}}$	$\begin{gathered} 59 \\ \mathrm{Pr} \end{gathered}$	${ }^{60} \mathrm{Nd}$	61 (145)	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\frac{63}{\mathrm{Eu}}$	64 Gd 157.25	$\stackrel{65}{\mathrm{~Tb}}$	$\begin{gathered} 66 \\ \text { Dy } \end{gathered}$	67 Ho 164.93	Er	$\stackrel{69}{\mathrm{Tm}}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	$\begin{gathered} 71 \\ \mathrm{Lu} \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(266)

constants

$R=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$
$R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$F=96485 \mathrm{C} / \mathrm{mol} \mathrm{e}^{-}$
$N_{\mathrm{A}}=6.022 \times 10^{23} / \mathrm{mol}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$

conversions

$1 \mathrm{~atm}=760$ torr
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
$1 \mathrm{~atm}=1.01325 \mathrm{bar}$
$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}(1.8)+32$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
conversions
$1 \mathrm{in}=2.54 \mathrm{~cm}$
$1 \mathrm{ft}=12 \mathrm{in}$
$1 \mathrm{yd}=3 \mathrm{ft}$
$1 \mathrm{mi}=5280 \mathrm{ft}$
$1 \mathrm{lb}=453.6 \mathrm{~g}$
1 ton $=2000 \mathrm{lbs}$
1 tonne $=1000 \mathrm{~kg}$
1 gal $=3.785 \mathrm{~L}$
1 gal $=231 \mathrm{in}^{3}$
$1 \mathrm{gal}=128 \mathrm{fl} \mathrm{oz}$
$1 \mathrm{fl} \mathrm{oz}=29.57 \mathrm{~mL}$

standard potentials at $25^{\circ} \mathrm{C}$	$E^{\circ}(\mathrm{V})$
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.87 V
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.61 V
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36 V
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\ell)$	+1.23 V
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{s})$	+0.92 V
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(\mathrm{s})$	+0.80 V
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77 V
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{s})$	+0.34 V
$\mathbf{2} \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$	-0.04 V
$\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{s})$	-0.13 V
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{s})$	-0.23 V
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$	-0.44 V
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{s})$	-0.76 V
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{s})$	-1.66 V
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}(\mathrm{s})$	-3.05 V

This extra practice set can be used to test your knowledge for the upcoming exam.

1. Conceptually, Faraday's law tells us that the number of moles of metal plated is equal to the charge applied divided by the charge required to plate one mole of metal. How much charge will it take to plate out one mole of cobalt metal from Co^{2+} ions?
a. $2 \times 96485 \mathrm{C}$
b. 96485 C
c. $N_{\mathrm{a}} \times 96485 \mathrm{C}$
d. $3 \times 96485 \mathrm{C}$
2. What drives a voltaic cell?
a. the spontaneity of the redox reaction
b. the push of electrons from cathode to anode
c. the external power source
d. the heat supplied by the chemical reaction
3. Suppose you set up what will be a fully functional electrochemical cell using two beakers with aqueous solutions, electrodes, and a salt bridge. Just before connecting the wires, you think about the cell you created for a bit. Which of the following statements is false?
a. The spontanous reaction will occur when you connect the wires.
b. The cell will run as a voltaic cell if you do not provide any voltage.
c. You can turn this into an electrolytic cell if you provide a sufficient amount of voltage.
d. You cannot run the nonspontaneous reaction, even if you supply a power source.
4. The standard cell potential and the number of electrons transferred are matched below for four different electrochemical cells. Which cell will provide the greatest amount of electrical work (energy)?
a. $E^{\circ}=3.95 \mathrm{~V}, n=1$
b. $E^{\circ}=0.58 \mathrm{~V}, n=6$
c. $E^{\circ}=1.38 \mathrm{~V}, n=4$
d. $E^{\circ}=1.55 \mathrm{~V}, n=3$
5. What is the balanced redox equation represented by the following shorthand notation:

$$
\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{H}^{+} \| \mathrm{Al}^{3+} \mid \mathrm{Al}
$$

a. $2 \mathrm{H}^{+}+2 \mathrm{Al} \rightleftharpoons 3 \mathrm{H}_{2}+2 \mathrm{Al}^{3+}$
b. $2 \mathrm{H}_{2}+3 \mathrm{Al}^{3+} \rightleftharpoons 2 \mathrm{H}^{+}+3 \mathrm{Al}$
c. $\mathrm{H}_{2}+\mathrm{Al}^{3+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Al}$
d. $3 \mathrm{H}_{2}+2 \mathrm{Al}^{3+} \rightleftharpoons 6 \mathrm{H}^{+}+2 \mathrm{Al}$
e. $6 \mathrm{H}^{+}+2 \mathrm{Al} \rightleftharpoons 3 \mathrm{H}_{2}+2 \mathrm{Al}^{3+}$
6. What are the oxidation numbers of Na, S, and O in $\mathrm{Na}_{2} \mathrm{SO}_{3}$?
a. $\mathrm{Na}=2, \mathrm{~S}=2, \mathrm{O}=-2$
b. $\mathrm{Na}=1, \mathrm{~S}=4, \mathrm{O}=-2$
c. $\mathrm{Na}=1, \mathrm{~S}=2, \mathrm{O}=-2$
d. $\mathrm{Na}=2, \mathrm{~S}=2, \mathrm{O}=-6$
e. $\mathrm{Na}=2, \mathrm{~S}=4, \mathrm{O}=-6$
7. What is the cell potential for the following nonstandard cell?

$$
\mathrm{Ni}\left|\mathrm{Ni}^{2+}(0.023 \mathrm{M}) \| \mathrm{Ni}^{2+}(0.068 \mathrm{M})\right| \mathrm{Ni}
$$

a. -202 mV
b. -216 mV
c. 27.9 mV
d. -13.9 mV
e. 13.9 mV
f. -27.9 mV
8. Looking at two half-reactions on a reduction potential table, how can you determine the roles of each reaction in an electrolytic cell?
a. The cathode is the stronger reduction reaction and the anode is the weaker reduction reaction.
b. The cathode is the weaker reduction reaction and the anode is the stronger reduction reaction.
c. There is no way to know.
9. You wish to electroplate 1.00 g of gold on a piece of jewelry from a concentrated solution of Au^{3+} ions. What current is needed to achieve the reaction in 10 hours?
a. 27.2 mA
b. 147 mA
c. 102 mA
d. 1.36 mA
e. 40.8 mA
10. What is the voltage of a standard voltaic cell made from the following two half reactions:

$$
\begin{aligned}
& \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-} \\
& \mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}
\end{aligned}
$$

a. -1.26 V
b. 1.49 V
c. 0.31 V
d. 3.03 V
e. 1.26 V
11. Which of the following factors is the main one that governs the maximum amount of current that a battery can deliver?
a. the salt used in the salt bridge
b. the working voltage of the battery
c. the conductance of the metal electrodes
d. the concentration of the electrolyte
e. the surface area of the electrodes
12. Elements in their standard state have an oxidation number equal to...
a. the column in the periodic table for metals and eight minus the column in the periodic table for nonmetals
b. the column in the periodic table
c. 0
d. +1 for monatomics and +2 for diatomics
13. Which type of battery uses the chemistry shown in the following shorthand notation?
$\mathrm{Zn}(\mathrm{s})|\mathrm{ZnOH}(\mathrm{s})| \mathrm{KOH}(\mathrm{aq})|\mid$

$$
\mathrm{KOH}(\mathrm{aq})\left|\mathrm{Mn}_{2} \mathrm{O}_{3}(\mathrm{~s})\right| \mathrm{MnO}_{2}(\mathrm{~s}) \mid \mathrm{C}(\mathrm{~s})
$$

a. NiCd
b. alkaline cell
c. car battery
d. fuel cell
e. lithium ion
14. What is the maximum amount of electrical work (energy) that can be obtained from the following cell?

$$
\mathrm{Fe}\left|\mathrm{Fe}^{3+} \| \mathrm{Pd}^{2+}\right| \mathrm{Pd}
$$

a. 556 kJ
b. 92.6 kJ
c. 5.76 kJ
d. 278 kJ
e. 185 kJ
15. Looking at two half-reactions on a reduction potential table, how can you determine the roles of each reaction in a voltaic cell?
a. The cathode is the weaker reduction reaction and the anode is the stronger reduction reaction.
b. The cathode is the stronger reduction reaction and the anode is the weaker reduction reaction.
c. There is no way to know.
16. Which of these is NOT a characteristic you would want for the primary cells powering your television remote?
a. The cell rapidly discharges its full potential.
b. The cell maintains a stable voltage for as long as possible.
c. The cell has a surface area proportional to the amount of current you want to provide to an external circuit.
d. The cell is voltaic.
17. The lead acid battery (aka car battery) has lead in various oxidation states and compounds. Which of the following species listed is the active material at the cathode of a lead acid battery as it is being discharged?
a. $\mathrm{PbSO}_{4}(\mathrm{~s})$
b. $\mathrm{PbO}_{2}(\mathrm{~s})$
c. $\mathrm{Pb}(\mathrm{s})$
d. $\mathrm{Pb}^{2+}(\mathrm{aq})$
e. $\mathrm{Pb}_{2} \mathrm{O}_{3}(\mathrm{~s})$
18. What is the standard potential of the strongest voltaic cell you can make using the following half reactions?

$$
\begin{gathered}
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-} \\
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu} \\
\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe} \\
\mathrm{Li}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}
\end{gathered}
$$

Note: use the standard potentials as your reference for "strongest."
a. 3.05 V
b. 1.36 V
c. 5.40 V
d. 4.41 V
e. 1.40 V
f. -1.36 V
19. What is the standard potential for the following cell?

$$
\mathrm{Ag}\left|\mathrm{Ag}^{+} \| \mathrm{Zn}^{2+}\right| \mathrm{Zn}
$$

a. -1.56 V
b. 1.56 V
c. 2.36 V
d. -0.72 V
e. -2.36 V
20. (part 1 of 2): Consider the electrochemical cell diagram shown below which is running spontaneously with the electron flow direction as shown. Choose the answer the correctly identifies the salt bridge and the flow of cations in cell compartment n.

a. $y=$ salt bridge; cations flow towards z
b. $p=$ salt bridge; cations flow towards z
c. $p=$ salt bridge; cations flow towards p
d. $x+y+z=$ salt bridge; cations do not flow
e. $m=$ salt bridge; cations flow towards x
21. (part 2 of 2): For the previously shown cell diagram, what is the assigned charge on the component labeled x
a. negative
b. positive
c. no charge
22. Which of the following half reactions would require an inert electrode?
a. $\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}(\mathrm{s})$
b. $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{s})$
c. $\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{~F}^{-}(\mathrm{aq})$
d. $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{s})$
e. $\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(\mathrm{s})$
23. In acidic conditions, iron(II) oxide and dichromate will react to form iron(III) ions and chromium ions as shown in the unbalanced redox equation below:

$$
\mathrm{FeO}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+}
$$

What is the sum of the two coefficients of the product cations $\left(\mathrm{Fe}^{3+}\right.$ and $\left.\mathrm{Cr}^{3+}\right)$ in the properly balanced equation?
a. 8
b. 6
c. 2
d. 3
e. 4
24. Consider the following concentration cells:

$$
\begin{aligned}
& \mathrm{Pd}\left|\mathrm{Pd}^{2+}(0.050 \mathrm{M}) \| \mathrm{Pd}^{2+}(0.050 \mathrm{M})\right| \mathrm{Pd} \\
& \mathrm{Ni}\left|\mathrm{Ni}^{2+}(0.050 \mathrm{M}) \| \mathrm{Ni}^{2+}(0.050 \mathrm{M})\right| \mathrm{Ni}
\end{aligned}
$$

Will the palladium concentration cell have a potential stronger than, weaker than, or equal to the nickel concentration cell?
a. equal to
b. stronger than
c. weaker than
25. Identify the change in oxidation number for nitrogen in the conversion of N_{2} to NO_{2}^{-}. Is this process a reduction or oxidation?
a. +6 , reduction
b. +3 , oxidation
c. +4 , reduction
d. +4 , oxidation
e. -3 , reduction
f. +5 , oxidation

Remember to bubble in ALL your answers BEFORE time is called. Double check your name, uteid, and version number before you turn in your bubblesheet. You must keep your exam for future reference. Please do not lose it. We will not replace it.

