Cuestion 5 Cuestion 5 Cuestion 6 Cuestion 7 Cuestion 6 Cuestion 7 Cuestion 8 Cuestion 9 Cuestion 10 Cues	pts
Cuestion 2 6 Carcation 19 of organic entirely of the bibling receitor in Kahno using soul or egy from CIF I CO — COCIF Cuestion 3 6 Charge the board enterpress provides, calculatin All for the observing sould or egy from CIF I CO — COCIF CUES TO — COCIF Cuestion 3 6 Charge the board enterpress provides, calculatin All for the observing sould or egy from Cuestion 4 6 Calcinose the state of the sta	
Cuestion 2 s Consistence amongs in establety or microstrating reaction in scientic line rigided congregations: CLF + CO	
Calculate the charge in entering the following brother in taking upting band energy dates: Cit + CO — COCIT: Question 3 6 Building the bond energy date provided, carefulls of forces following excellent: Hy (g) + Cly (g) — 2HOI (g) Energy pubmoning Fig. (g) + Cly (g) — 2HOI (g) Fig. (g) = 422 Fig. (g) = 424 F	
College the charge in entertainty of the following section in white ching band emerge dates: Cit + CO — COCIT Question 3 6 Using the bond energy date proceed, as called off fortish list owing excition. Hy (g) + Cly (g) — 2HO (tg) [Incol 1 4	
Cuestion 3 6 Cuestion 3 6 Cuestion 3 6 Cuestion 4 6 Cuestion 5 6 Cuestion 5 6 Cuestion 5 6 Cuestion 6 7 Cuestion 6 7 Cuestion 6 7 Cuestion 7 6 Cuestion 6 7 Cuestion 7 6 Cuestion 7 6 Cuestion 8 6 Cuestion 8 6 Cuestion 8 6 Cuestion 9 7 Cuestion 10 7 Cuestio	
Design the borse energy code provident, calculated 201 for the following reaction. 18 (1) = Cly (0) — 21/0 (1) 20	
Using the bord energy basis provided, calculate 2H for the following reactor. Hb (g) + Ob (g) - 2HO (g) 24 24 24 24 24 24 24 2	
Using the bond versely along provided, solution 2016 (a) - 196 (a) + Clo (g) + Clo (g) - 24 (Clo (g	pts
Bound Bound Bounds Card	
CLE 222 H=O 432 Askabas	
Outset ion 4 6 Set Nation Set Nation Outset ion 4 6 Current encourage in writingly of the following vestion samp bond energy de Nat Li (g) = 1 is (g) — 2 Ni is (g) (120 Nation 5 6 What is the vause of free inflow for the combustion of hydrogen in kidge AV for the process of the same of t	
Guestion 4 6 Guestion 4 6 Guestion 4 6 Guestion 5 7 Guestion 5 6 What is the value of head floor for the conduction of hydrogen in Kulg? Aff for it for the conduction of hydrogen in Kulg? Aff for it for the conduction of hydrogen in Kulg? Aff for it for the conduction of hydrogen in Kulg? Aff for it for the conduction of hydrogen in Kulg? Aff for it for the conduction of hydrogen in Kulg? Aff for it for the kulg aff kulture Guestion 5 6 Guestion 6 6 6 Who is the value of head floor for the conduction of hydrogen in Kulg? Aff for it for kulture Guestion 6 6 6 Who is the for tollowing is the most efficient float based on its conduction onthelp per gran? What is the name efficient method to bessix a high mater mass floation from a conduction in the conduction of hydrogen in the conduction float in the name efficient float	
Question 4 6 Estimate the change in enthology of the following reaction using bland entropy date to the change in enthology of the following reaction using bland entropy dates following in the change of the following reaction using bland entropy dates following in the following is the react entropy dates in 285 s./mol. - 454 k.lig - 475 k.lig - 475 k.lig - 475 k.lig - 476 k.	
Estimate the charge in entitating of the following reaction using bond energy dis N ₂ H ₂ (g) + H ₂ (g) — 2NH ₂ (g) -1449 A, Mind -1549 A, Mind -1559 A	
N_Hs_(g) — 2NHs_(g) — 2NHs_(g) = -1418 Abired -1458 Abired -14	pts
144 Hall Name 124 Hall Name 125 Hall Name 125 Hall Name 126 Hall Name 126 Hall Name 127 Hall Name 127 Hall Name 128 Hall Nam 128 Hall Name 128 Hall Name 128 Hall Name 128 Hall Name	ıta:
Mind is the value of heat flow for the combustion of hydrogen in killing 2.49* for the process is 2.300 kilmon.	
Question 5 6 What is the value of heat flow for the combustion of hydrogen in kurgh AHT for it process is 426 kurnor. 143 kurnor of the State of t	
What is the value of heat thou for the correctation of hydrogen in k-light An 1701 for 151 k-ligh process is 286 k-limid. - 143 k-ligh - 171 k-ligh - 172 k-ligh - 182 k-ligh - 182 k-ligh - 183 k-ligh - 183 k-ligh - 184 k-ligh - 184 k-ligh - 185 k-ligh - 1	
- 12 Mark 19 - 17 Mark 19 - 17 Mark 19 - 27 Mark 19 - 27 Mark 19 - 27 Mark 19 - 28 Mark 19 - 29 Mark 19 - 20 M	pts
TILB kild ST2 kild ST2 kild ST2 kild St2 kild St3 kild St4 kild St4 kild St5	:his
Guestion 6 Guestion 6 Guestion 6 Guestion 6 Guestion 7 Guestion 8 An octane isomer can be made into a more efficient fuel by adding branching through the process of Interpret addition 9 Guestion 8 Guestion 8 Guestion 8 Guestion 8 Guestion 9 Guestion 10 Guestion	
Question 6 Guestion 6 Guestion 6 Guestion 7 Guestion 8 An octane isomer can be made into a more efficient fuel by adding branching through the process of functional distillation freforming catalytic cracking through the process of functional distillation functional dist	
Which of the following is the most efficient fuel based on its combustion enthalper gram? coad rothurno wood yologen cutains catains What is the more efficient method to break a high molar mass fraction from a crude oil refiney down to a specific fuel? tractorial desiliation eldering catalytic roucking thornal cracking thornal cracking thornal cracking tactorial desiliation the process of tractorial desiliation the process of a = mCpAT	
Which of the following is the most efficient fuel based on its combustion enthalper gram? coad rothurno wood yologen cutains catains What is the more efficient method to break a high molar mass fraction from a crude oil refiney down to a specific fuel? tractorial desiliation eldering catalytic roucking thornal cracking thornal cracking thornal cracking tactorial desiliation the process of tractorial desiliation the process of a = mCpAT	pts
cotal metatria wood hydringen cotalise Cluestion 7 6 What is the more efficient method to break a high molar mass fraction from a crude of refinery down to a specific fuel? fractional distillation reterming catalytic crucking thermal cracking Chemical cracking Thermal cracking Thermal cracking Catalytic reterming q = mc_str q = mc - q-q-q-q-q-q-q-q-q-q-q-q-q-q-q-q-q-q-	
wood hydrogen cotane Question 7 6 What is the more efficient method to break a high molar mass fraction from a crude oil refinery down to a specific fuel? fractional distillation reforming cotalytic cracking Question 8 6 An octane isomer can be made into a more efficient fuel by adding branching through the process of. fractional distillation thermal cracking Question 9 6 If you want to calculate the heat flow involving a temperature change, which equation will you use? En bonds breaking -En bonds forming a = mGAT a = mGAT a = mGAT brown to calculate the heat flow involving a phase change, which equation you use? En bonds breaking -En bonds forming a = mGAT a = mGAT brown to calculate the heat flow involving a phase change, which equation you use? Choosing the making -En bonds forming a = mGAT a = mGAT a = mGAT brown to calculate the heat flow involving a phase change, which equation you use? Choosing the making -En bonds forming a = mGAT brown to calculate the sign of the heat flow (+ or -) for each of the following physical changes: changes: Changes: Choosing the heat the sign of the heat flow (+ or -) for each of the following physical changes: Changes: Changes: Choosing the heat flow (+ or -) for each of the following physical changes: C	
Question 7 6 What is the more efficient method to break a high molar mass fraction from a crude oil refinery down to a specific fuel? fractional distillation reforming themal cracking themal cracking themal cracking Question 8 An octane isomer can be made into a more efficient fuel by adding branching through the process of fractional distillation themal cracking Question 9 6 If you want to calculate the heat flow involving a temperature change, which equation will you use? En bonds breaking - En bonds forming Question 10 6 If you want to calculate the heat flow involving a phase change, which equation you use? Question 10 6 Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Question 12 6 Question 10 Calculate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Question 10 Question 10 Calculate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Question 10 Question 11 Calculate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Question 10 Question 10 Question 10 Question 11 And Designate the sign of the heat flow (+ or -) for each of the following physical changes: And The first the sign of the heat flow (+ or -) for each of the following physical changes: An of the first the sign of the heat flow (+ or -) for each of the following physical changes: An of the first the sign of the heat flow (+ or -) for each of the following physical changes: An of the first the sign of the heat flow involving an phase change c	
What is the more efficient method to break a high molar mass fraction from a crude oil refinery down to a specific fuel? fractional distillation reforming catalytic tracking thermal cracking Guestion 8 An octane isomer can be made into a more efficient fuel by adding branching through the process of fractional satillation thermal cracking catalytic cracking Guestion 9 6 If you want to calculate the heat flow involving a temperature change, which equation will you use? 2 in bonds breaking - 2n bonds forming a = mol/b a = mol/can a = mol/can a = mol/can Catalytic cracking - 2n bonds forming a = mol/can a = mol/can Catalytic cracking - 2n bonds forming a = mol/can a = mol/can Catalytic cracking - 2n bonds forming a = mol/can Catalytic cracking - 2n bonds forming a = mol/can Catalytic cracking - 2n bonds forming a = mol/can Can bonds breaking - 2n bonds forming a = mol/can Can bonds breaking - 2n bonds forming a = mol/can Can bonds breaking - 2n bonds forming a = mol/can can be segmented by the heat flow (+ or -) for each of the following physical changes: Vaporization: Frueidin: Frueidin: Catalytic cracking - 2n bonds forming Catalytic cracking - 2n bonds forming a = mol/can can be segmented by the following physical changes: Vaporization: Frueidin: Catalytic cracking - 2n bonds forming Catalytic cracking - 2n bonds forming a = mol/can can be segmented by the following physical changes: Vaporization: Frueidin 12 Guestion 13 Guestion 14 Guestion 15 Guestion 16 Guestion 17 Guestion 18 Guestion 19 Gue	
What is the more efficient method to break a high molar mass fraction from a crude oil refinery down to a specific fuel? fractional distillation reforming catalytic tracking thermal cracking Guestion 8 An octane isomer can be made into a more efficient fuel by adding branching through the process of fractional satillation thermal cracking catalytic cracking Guestion 9 6 If you want to calculate the heat flow involving a temperature change, which equation will you use? 2 in bonds breaking - 2n bonds forming a = mol/b a = mol/can a = mol/can a = mol/can Catalytic cracking - 2n bonds forming a = mol/can a = mol/can Catalytic cracking - 2n bonds forming a = mol/can a = mol/can Catalytic cracking - 2n bonds forming a = mol/can Catalytic cracking - 2n bonds forming a = mol/can Catalytic cracking - 2n bonds forming a = mol/can Can bonds breaking - 2n bonds forming a = mol/can Can bonds breaking - 2n bonds forming a = mol/can Can bonds breaking - 2n bonds forming a = mol/can can be segmented by the heat flow (+ or -) for each of the following physical changes: Vaporization: Frueidin: Frueidin: Catalytic cracking - 2n bonds forming Catalytic cracking - 2n bonds forming a = mol/can can be segmented by the following physical changes: Vaporization: Frueidin: Catalytic cracking - 2n bonds forming Catalytic cracking - 2n bonds forming a = mol/can can be segmented by the following physical changes: Vaporization: Frueidin 12 Guestion 13 Guestion 14 Guestion 15 Guestion 16 Guestion 17 Guestion 18 Guestion 19 Gue	
crude oil refinery down to a specific fuel? fractional distillation returning catalytic cracking thermal cracking An octane isomer can be made into a more efficient fuel by adding branching through the process of fractional distillation thermal cracking catalytic reforming catalytic reforming catalytic reforming catalytic reforming catalytic reforming a = mCpAT q = mCpAT q = mCpAT q = mC Xn bonds breaking - Xn bonds forming q = mC The bonds breaking - Xn bonds forming q = mC q = mC The bonds breaking - Xn bonds forming q = mC Question 10 The process of the fill of the following a phase change, which equation you use? Question 11 An octane is a process of the following physical changes: Vaporization: Fusion: Fusion: Fusion: Fusion: Fusion: Chart 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice for the following number. Chart 1 of 4 Draw the heating curve for the process of heating 14.0 g pure ice for the following number. Chart 1 of 4 Draw the heating curve for the process of heating 14.0 g pure ice for the following number. Chart 1 of 4 Draw the heating curve for the process of heating 14.0 g pure ice for the following number. Chart 1 of 4 Draw the heating curve for the process of heating 14.0 g pure ice for the following number. Chart 1 of 4 Draw the heating curve for the process of heating 14.0 g pure ice for the following number. Chart 1 of 4 Draw the heating curve for the process of heating 14.0 g pure ice for the following number. Chart 1 of 4 Draw the heating curve for the process of heating 14.0 g pure ice for the following number is	pts
reforming catalytic cracking thermal cracking Question 8 An octane isomer can be made into a more efficient fuel by adding branching through the process of fractional distillation thermal cracking catalytic cracking Question 9 6 If you want to calculate the heat flow involving a temperature change, which equation will you use? Σn bonds breaking -Σn bonds forming q = mC ₂ ΛΤ q = mMH q = 2/m - C ₂ λΤ q = mC Σn bonds breaking -Σn bonds forming q = mC ₂ ν Σn bonds breaking -Σn bonds forming q = mC Σn bonds breaking -Σn bonds forming q = mC Σn bonds breaking -Σn bonds forming q = mC - C ₂ λΤ q = mV _{free} q = mV _{free} q = 2/m - C ₂ λΤ Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice f -18.0 °C to 84 °C and user it to enswer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
Cluestion 8 An octane isomer can be made into a more efficient fuel by adding branching through the process of fractional distillation (thermal cracking catalytic referming catalytic cracking At you want to calculate the heat flow involving a temperature change, which equation will you use? If you want to calculate the heat flow involving a temperature change, which equation will you use? If you want to calculate the heat flow involving a phase change, which equation you use? Question 10 6 If you want to calculate the heat flow involving a phase change, which equation you use? α = mC Σ n bonds breaking -Σ n bonds forming α = mC, μΛ α = m γ ₄ μΛ Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice first of the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
An octane isomer can be made into a more efficient fuel by adding branching through the process of trackonal distillation thermal cracking catalytic credwing catalytic credwing catalytic credwing catalytic credwing catalytic credwing diff you want to calculate the heat flow involving a temperature change, which equation will you use? Σπ bonds breaking -Σπ bonds forming q = mC ₂ ΔT q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mΔ/f _{inance} q = 2(m - C ₂ ΔT) Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Sublimation: Catalytic credwing Catalytic credwing Catalytic credwing (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice for 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
An octane isomer can be made into a more efficient fuel by adding branching through the process of trackonal distillation thermal cracking catalytic credwing catalytic credwing catalytic credwing catalytic credwing catalytic credwing diff you want to calculate the heat flow involving a temperature change, which equation will you use? Σπ bonds breaking -Σπ bonds forming q = mC ₂ ΔT q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mC Σπ bonds breaking -Σπ bonds forming q = mΔ/f _{inance} q = 2(m - C ₂ ΔT) Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Sublimation: Catalytic credwing Catalytic credwing Catalytic credwing (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice for 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
through the process of fractional distillation themal cracking catalytic cracking catalytic cracking catalytic cracking Guestion 9 6 If you want to calculate the heat flow involving a temperature change, which equation will you use? Σπ bonds breaking - Σπ bonds forming q = mC ₂ ΔT q = mΔH q = 2(m - C ₆ ΔT) q = mC Question 10 6 If you want to calculate the heat flow involving a phase change, which equation you use? q = mC Σπ bonds breaking - Σπ bonds forming q = mC ₂ ΔT q = mΔH _{freax} q = mC ₂ ΔT q = mΔH _{freax} q = mC ₂ ΔT Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice for 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	pts
thermal cracking catalytic reforming catalytic cracking	
Question 9 6 If you want to calculate the heat flow involving a temperature change, which equation will you use? Σn bonds breaking - Σn bonds forming $q = mC_2\Delta T$ $q = m\Delta H$ $q = 2(m - C_2\Delta T)$ $q = mC$ Question 10 6 If you want to calculate the heat flow involving a phase change, which equation you use? $q = mC$ Σn bonds breaking - Σn bonds forming $q = mC_2\Delta T$ $q = mC_2\Delta T$ Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice for each of the heat flow (+ or -) for each of the following physical changes: What is the heat flow the heating curve for the process of heating 14.0 g pure ice for each of the following the physical changes: What is the heat flow the heating curve for the process of heating 14.0 g pure ice for each of the following the physical changes: What is the heat flow the heating curve for the process of heating 14.0 g pure ice for each of the following physical changes: What is the heat flow the heating curve for the process of heating 14.0 g pure ice for each of the following physical changes: What is the heat flow the heating curve for the process of heating 14.0 g pure ice for each of the following physical changes: What is the heat flow the heating curve for the process of heating 14.0 g pure ice for each of the following physical changes: What is the heat flow the heating curve for the process of heating 14.0 g pure ice for each of the following physical changes:	
If you want to calculate the heat flow involving a temperature change, which equation will you use? \[\text{Tn bonds breaking -\text{Tn bonds forming}} \] \[\q = m\text{C} \\ \q = m\text{A} \\ \q = 2(m - C_s\text{T}) \] \[\q = mC \] \[\text{Sn bonds breaking -\text{Tn bonds forming}} \] \[\q = mC \] \[\text{Sn bonds breaking -\text{Tn bonds forming}} \] \[\q = mC \] \[\text{Sn bonds breaking -\text{Tn bonds forming}} \] \[\q = mC_s\text{T} \] \[\q = m\text{A}\text{T_{cast}} \] \[\q = \text{To fall part the heat flow (+ or -) for each of the following physical changes: \] \[\text{Vaporization:} \] \[\text{Freezing:} \] \[\text{Sublimation:} \] \[\text{Question 12} \] \[\text{6} \] \[\text{Cn b 34 'C and use it to answer the next four questions.} \] \[\text{What is the heat required to heat the ice to 0 'C? Answer in joules to the nearest whole number.} \]	
If you want to calculate the heat flow involving a temperature change, which equation will you use? \[\text{Tn bonds breaking -\text{Tn bonds forming}} \] \[\q = m\text{C} \\ \q = m\text{A} \\ \q = 2(m - C_s\text{T}) \] \[\q = mC \] \[\text{Sn bonds breaking -\text{Tn bonds forming}} \] \[\q = mC \] \[\text{Sn bonds breaking -\text{Tn bonds forming}} \] \[\q = mC \] \[\text{Sn bonds breaking -\text{Tn bonds forming}} \] \[\q = mC_s\text{T} \] \[\q = m\text{A}\text{T_{cast}} \] \[\q = \text{To fall part the heat flow (+ or -) for each of the following physical changes: \] \[\text{Vaporization:} \] \[\text{Freezing:} \] \[\text{Sublimation:} \] \[\text{Question 12} \] \[\text{6} \] \[\text{Cn b 34 'C and use it to answer the next four questions.} \] \[\text{What is the heat required to heat the ice to 0 'C? Answer in joules to the nearest whole number.} \]	pts
Σn bonds breaking -Σn bonds forming q = mC _g λT q = mλH q = 2(m - C _g λT) q = mC Question 10 If you want to calculate the heat flow involving a phase change, which equation you use? q = mC Σn bonds breaking -Σn bonds forming q = mC _g λT q = mΔth _{bana} q = (m - C _g λT) Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization:	
Q = mC _s ΔT Q = m/AH Q = 2(m - C _s ΔT) Q = mC If you want to calculate the heat flow involving a phase change, which equation you use? Q = mC En bonds breaking -Σn bonds forming Q = mC _s ΔT Q = mAH _{tonos} Q = 2(m - C _s ΔT) Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice f -18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
$q = 2(m - C_{Q}\Delta T)$ $q = mC$ Question 10 6 If you want to calculate the heat flow involving a phase change, which equation you use? $q = mC$ Σn bonds breaking -Σn bonds forming $q = mC_{g}\Delta T$ $q = m\Delta H_{trans}$ $q = 2(m - C_{g}\Delta T)$ Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice f -18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
Question 10 6 If you want to calculate the heat flow involving a phase change, which equation you use? q = mC Σn bonds breaking -Σn bonds forming q = mC _s ΔT q = mΛH _{trans} q = 2(m - C _s ΔT) Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice f -18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
If you want to calculate the heat flow involving a phase change, which equation you use? Q = mC Σn bonds breaking -Σn bonds forming Q = mΔH _{trans} Q = 2(m - C _g ΔT) Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice f -18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
you use? $q = mC$ Σ n bonds breaking - Σ n bonds forming $q = mC_{\phi}\Lambda T$ $q = m\Delta H_{trans}$ $q = 2(m - C_{\phi}\Delta T)$ Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice finds 0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	pts
Σn bonds breaking -Σn bonds forming $q = mC_S \wedge T$ $q = m\Delta H_{trans}$ $q = 2(m - C_S \Delta T)$ Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice f -18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	ı will
$q = mC_S\Delta T$ $q = m\Delta H_{trans}$ $q = 2(m - C_S\Delta T)$ Question 11 8 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from the content of the content of the process of heating 14.0 g pure ice from the heating curve for the process of heating 14.0 g pure ice from the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
Question 11 Question 11 Question 11 Besignate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Sublimation: Question 12 Gent 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
Question 11 Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
changes: Vaporization: Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice freezing. Compared to a sawer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	pts
Fusion: Freezing: Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice frame of the content of the content of the process of heating 14.0 g pure ice frame of the content of	
Sublimation: Question 12 6 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
Question 12 (Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
(Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice for the 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
(Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice for the 18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	
-18.0 °C to 84 °C and use it to answer the next four questions. What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole number.	pts
nearest whole number.	rom
Question 13	
Question 13 6	
	pts
(Part 2 of 4) What is the heat required to fully melt the ice at 0 °C? Answer in joules to the nearest whole number.	
Ouestion 14	
Question 14 6 (Part 3 of 4) What is the heat required to heat the water from 0 °C to 84 °C?	p.
Answer in joules to the nearest whole number.	pts
	pts
Question 15	pts
(Part 4 of 4) What is the total heat applied during this process? Answer in kilojoules (!) to three significant figures.	pts
The specific heat for liquid argon and gaseous argon is 25.0 J/mol·°C and 20.8 J/mol·°C, respectively. The enthalpy of vaporization of argon is 6506 J/mol. How much energy is required to convert 1 mole of liquid Ar from 5 °C below its boiling	pts
point to 1 mole of gaseous Ar at 5 °C above its boiling point? 229 J	pts

O 125 J

O 6610 J

HW08 - Enthalpy & Fossil Fuels