CH 302 Unit 2 Day 3

ACID, BASE EQUILIBRIUM

BUFFERS

Acid Base Equilibria Roadmap

- 1. Define and identify acids and bases
- Solve for pH and pOH for strong and weak acids/bases
- Identify and analyze the products of a full neutralization reaction (adding acid to base and vice versa)
- Identify and analyze the products of a partial neutralization
- Understand neutralization reactions in the context of titrations and indicators
- 6. Understand the role of pH in regulating the dominant species of a polyprotic acid

} Lost week

Acid and Base Question Types (Simplified)

- Strong acid, strong base questions
 - Simple relationships converting [H₃O⁺] and [OH⁻] to pH, pOH
- Weak acid, weak base questions
 - Approximations or quadratic formula (if necessary) with your general formula:

 - Solve for [H⁺] using K_a Solve for [OH⁻] using K_b
- Buffer questions
 - Partial neutralization of a weak acid and its salt (conjugate base); weak base and its salt (conjugate acid)
 - Solve for pH, pOH using Henderson-Hasselbalch equation
- Neutralization reactions and titration experiments

Neutralization Reactions: Salts

- The product of a neutralization reaction is a salt. In acid/base chemistry, your salt can be neutral, acidic, or basic depending on the reaction.
- **GENERIC REACTION (very helpful):**

Strong base to weak acid: results in a basic salt NaoH, CH3Cool+

Neutralization Reactions: Salts

Identify whether the following solutions will be acidic, basic, or neutral. How would you solve for the pH?

KO CH3CH2 NH2

[H+]= / K. . Ch

0.05 M CH₃CH₂NH₃+Cl⁻

One step harder... An ammonium perchlorate solution is made by combining 200 mL 1.0 M perchloric acid (HClO₄) and 200 mL 1.0 M ammonia (NH₃). What is the pH?

R
$$H(10i_1 + NH_3 \Rightarrow NH_Y Cloy + H_{2C})$$

R $H(10i_1 + NH_3 \Rightarrow NH_Y Cloy + H_{2C})$

C -0.2 -0.2 0.2 0.2 0.3

E \emptyset \emptyset 0.2 0.2 0.3 0.3
 $C_{A} = \frac{0.2}{0.4}$ 0.3
 $C_{A} = \frac{0.2}{0.4}$ 0.3
 $C_{A} = \frac{0.2}{0.4}$ 0.3
 $C_{A} = \frac{0.2}{0.4}$ 0.3

Future note: this question is identical to calculating the buffer zone of a titration experiment

And even harder...

 $-\log K_0 = \frac{R_b NH_3 = 1.8 \times 10^{-5}}{K_b NH_3 = 1.8 \times 10^{-5}}$ Thining 100 ml 1 1 M

An ammonium perchlorate solution is made by combining 100 mL 1.1 M perchloric acid ($HClO_4$) and 100 mL 2.0 M ammonia (NH_3). What is the pH?

R
$$HCloy + NH_3 \Rightarrow NH_y cloy + H_2C$$
 $pH = pK_0 + l_0g\frac{A}{HA}$
I . II 0.20 ϕ $q_{17} = 9.265 + l_0g\frac{O.01}{O.11}$
C -. II -. II +. II
E ϕ (.09) (.11)

Future note: this question is identical to calculating the pH at the equivalence point of a titration

molest

The purpose of a buffer is to resist changes in pH.

moles HA

- Here's the idea:
 - If you add 0.1 mole of NaOH to pure water, you are adding 0.1 mole of OH⁻. This
 results in a pretty big change in pH
 - If you add 0.1 mole of NaOH to a solution of acetic acid and sodium acetate, you are just creating 0.1 mole more of sodium acetate. This *barely* increases the pH.

$$\sqrt{pH} = pK_a + \log(\frac{A^-}{HA})$$

$$\frac{7LA_3}{LA_3}$$

$$\frac{7LA_3$$

What is a buffer and what is not:

- A buffer is made of:
 - A weak acid and its salt (conjugate base)
 - A weak base and its salt (conjugate acid)
- A buffer is made by:
 - Mixing a weak acid and a strong base
 - Mixing a weak base and a strong acid

```
Buffer:

100 ml 0.5 M HNO2 + 100 ml 0.5 M NaNO2 V

100 ml 0.25 M LioH + 100 ml 0.5 M HNO2

Not a buffer

100 ml 0.5 M LioH + 100 ml 0.5 M HNO2

= 100 % L: NO2
```

Choosing a Buffer

- Buffer works t/- 1 pH pt
 1:10 3 HA: A from pKa
 10:1
- A buffer only functions in the "Buffer Zone," which is +/- 1 pH point of the pK_a (for a weak acid buffer) or pK_b (generally the standard for a weak base buffer).
- Buffers are used in the real world (reaction chemistry, physiology, pharmacology, etc.) to maintain a stable pH environment. You choose a buffer with a pK_a closest to the pH environment you want to hold constant.

Example Question: The human bloodstream is held constant by a buffer system at pH = 7.3.

Which of the following buffer systems is likely found in the bloodstream?

- (a) Carbonic Acid, pKa = 6.37
- b. Acetic Acid, pKa = 4.75
- c. Hydrofluoric Acid, pKa = 3.14
- d. Ammonium, pKa = 9.21

Exam Question

A buffer was prepared by mixing 0.200 mole of ammonia ($pK_b = 4.76$) and 0.200 mole of ammonium chloride to form an aqueous solution with a total volume of 500 mL.

50.0 mL of 1.00 M HCl was added to 250 mL of this solution.

What is the pH of this solution?

R HCI+ NH3
$$\rightleftharpoons$$
 NHyCI+ H2O

I .05 0.160 0.100

C -.05 -0.05 +0.05

E \emptyset .05 .15

PH= PK4+ $\log \frac{.65}{.15} = 8.76$

Exam Question

7PK=9.24

A buffer was prepared by mixing 0.200 mole of ammonia (p K_b = 4.76) and 0.200 mole of ammonium chloride to form an aqueous solution with a total volume of 500 mL.

50.0 mL of 1.00 M HCl was added to 250 mL of this solution.

What is the pH of this solution?

PH = PKa +
$$l_{c9} = \frac{0.100 - 0.05}{0.100 + 0.05}$$

9.24 + $l_{c9} = \frac{0.100 - 0.05}{0.100 + 0.05}$

Too-Hard-For-The-Exam Question

A potassium acetate buffer solution is prepared by mixing 100 mL 0.200 M CH_3COOH and 100 mL 0.200 M KCH_3COO .

What volume of 0.125 M KOH is necessary to raise the pH to 5.440? pKa = 4.74