CH 302 Unit 2 Day 2

LE CHAT'S, INTRO THE ACID BASE

Le Chatelier's Principle

- Le Chatelier's Principle creates the guidelines for how a system responds to any disruption of equilibrium
- In other words, a system at equilibrium will respond to stress by directly opposing the stress.
- Factors that might disrupt equilibrium include:
 - 1. Adding or removing species involved in a reaction
 - 2. A change in the volume or pressure
 - 3. Dilution or concentration of the system
 - Adding an inert gas at constant pressure
 - 5. Adding an inert gas at constant volume (doesn't actually impact eq)
 - 6. A change in temperature

Le Chatelier's Principle - Temperature

- To simplify the relationship between K and temperature, we can think of temperature like a product or a reactant of a chemical reaction depending on whether the reaction is exothermic or endothermic.
- Endothermic reactions are driven by an input of heat; therefore, heat is like a reactant. Increasing the heat is like adding a reactant. This shifts the equilibrium toward the products.
 Heat + Reactants ⇒ Products
- Exothermic reactions have an output of heat; therefore, heat is like a product.
 Increasing the heat is like adding a product. This shifts the equilibrium toward the reactants.

Temperature Dependence of K

K's dependence on temperature depends on whether the reaction is endothermic or exothermic. The van't Hoff Equation is:

$$\ln(\frac{K_2}{K_1}) = \frac{\Delta H_{rxn}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Le Chatelier's Principle - Questions

Consider the reaction below when it is at equilibrium:

$$3NO_2(g) + H_2O(I) \rightleftharpoons 2HNO_3(aq) + NO(g) \Delta H^\circ = -34kJ/mol at 298 K$$

In which direction will the reaction shift when:

- a. 3 moles of NO(g) are removed Q < \(\subseteq \)
- b. The temperature is raised to 320 K T↑ K↓ ←
- c. The total volume is decreased $\bigvee \downarrow \uparrow \uparrow \uparrow \longrightarrow$
- d. An inert gas is added at constant volume NOTHING
- e. An inert gas is added at constant pressure (in a piston system) ✓↑ ७ ♦
- f. The temperature is lowered to 100 K TJ KA ->
- g. 4 moles of HNO₃ are added \bigcirc \nearrow \swarrow

Acids and Bases

IDENTIFYING ACIDS AND BASES, CALCULATING pH

Acid Base Equilibria Roadmap

- 1. Define and identify acids and bases
- Solve for pH and pOH for strong and weak acids/bases
- Identify and analyze the products of a full neutralization reaction (adding acid to base and vice versa)
- Identify and analyze the products of a partial neutralization
- Understand neutralization reactions in the context of titrations and indicators
- Understand the role of pH in regulating the dominant species of a polyprotic acid

} Today

Hord Steff

Acids and Bases Fundamentals

- The study of acids and bases revolves around understanding the chemical environment of aqueous solutions associated with proton (hydronium) and hydroxide concentrations.
- The standard units of measurement for acids and bases are pH and pOH

$$pOH = -\log[OH^{-1}]$$

$$pOH = -\log[OH^{-1}]$$

- Some things to note about this relationship:
 - Because this relationship is based on the negative log, a high value of [H+] will have a low pH value.
 - By using a logarithmic scale, you should understand that a difference between pH
 2 and pH
 7 is not a difference of 5, but 5 orders of magnitude.

Identifying Strong Acids & Bases

What's actually happening in Acid/Base Equilibria

You place 0.15 moles of methylamine (weak base) into 1 L water. What happens?

Conceptual Question: What is the dominant species in solution for the reaction discussed above? CH₃NH₂

b. CH₃NH₃+

c. H⁺

d. OH-

A particularly important K value

 K_w represents the auto-ionization of water; that is, it is the equilibrium constant for the following reaction at 298.15K:

$$H_2O_{(I)} \rightleftharpoons H^+_{(aq)} + OH^-_{(aq)}$$

$$K_w = 1.0 \times 10^{-14} = [H^+][OH^-]$$

- K_w represents the standard for our pH scale at room temperature
 - For a neutral solution, pH = 7
 - Acidic solutions have pH < 7
 - Basic solutions have pH > 7

Therefore, the H⁺ and OH⁻ concentrations are equal to 1.0 x 10⁻⁷ for a neutral solution at room temperature

Quantifying Acids and Bases

The standard units of measurement for acids and bases are pH and pOH

$$pH = -log[H^+]$$
 $pOH = -log[OH^-]$

In a strong acid or strong base solution, we can use this relationship:

$$pH = -\log[C_A]$$
 $pOH = -\log[C_B]_*$ 2.63

pH and pOH can be interconverted using the relationship based on pK_w (14):

$$pH = 14 - pOH$$
 $pOH = 14 - pH$

$$f = \frac{C_A}{K_A} \ge 1000$$
,

Bases ignore χ

Quantifying Weak Acids and Bases

 For a weak acid, we are dealing with a more interesting equilibrium (additional steps). The approximation formulas are below:

$$\sqrt{[H^+]} = \sqrt{C_{HA} \cdot K_a} \qquad [OH^-] = \sqrt{C_B \cdot K_b} \qquad \text{if } C_A$$

Don't forget that at any time you can convert between different terms:

$$K_{w} = 1 \cdot 10^{-14} = [H^{+}][OH^{-}]$$

$$K_{w} = K_{a}K_{b}$$

$$K_{w} = K_{a}K_{b}$$

$$\frac{K_{w}}{K_{b}} = K_{a}$$

$$\frac{K_{w}}{K_{b}} = K_{a}$$

$$\frac{K_{w}}{K_{b}} = K_{a}$$

$$\frac{K_{w}}{K_{b}} = K_{a}$$

Quantifying Weak Acids and Bases

Important Reminder: K_a will get you [H⁺], K_b will get you [OH⁻]. Therefore, K_a corresponds to a weak acid reaction and K_b corresponds to a weak base reaction.

reaction.
$$K_a = \frac{[H^+][A^-]}{[HA]} \xrightarrow{PH = -\log[H^+]} pH = -\log[H^+]$$
(Solve using approximation or quadratic)

$$\mathbf{B} \rightleftharpoons \mathbf{B}\mathbf{H}^{+} + \mathbf{O}\mathbf{H}^{-} \longrightarrow K_{b} = \frac{[OH^{-}][BH^{+}]}{[B]} \longrightarrow \mathbf{pOH} = -\log[OH^{-}]$$

Acid Base Reactions Recap

1. Strong Acid

$$HCl(ab) \rightarrow H^{\dagger}(ab) + Cl^{\dagger}(ab)$$
 $PH = -log(C_A)$

2. Strong Base
$$N_4OH(4) \rightarrow N_4^+(4) + OH^-(4) \qquad pGH = -leg(C_B)$$

$$C_a(OH)_2(4) \rightarrow C_4^{2+}(4) + 2OH^- pOH = -leg(2 \times C_B)$$
3. Work Asid

3. Weak Acid $HAGD \rightarrow H^{+}GD + A^{-}GD$ $K_{a} = \frac{\chi^{2}}{G-\chi}$ $PH = -log[H^{+}]$

4. Weak Base
$$\rightarrow$$
 BH+ \rightarrow OH (18) $K_b = \frac{\chi^2}{C_{B-}\chi}$ poH = $-lg$ [OH-]

Warm-Up Question

Classify each solution as acidic, basic, or neutral:

0.5 M HF
 0.5 M CH₃COOH

- 4. 0.5 M NaOH -> strong buse
- 5. 0.5 M NaCl -> salt, neutral

Conceptual Question K_w

Which of the following is/are true for a neutral pure water solution at any temperature?

Note: ΔH° for the auto-ionization of water is about 55.7 kJ/mol.

i.
$$K_w = 1.0 \times 10^{-14}$$

ii. $1.0 \times 10^{-1} \times [H^+][OH^-]$
iii. $[H^+] = [OH^-]$
iv. $[H^+]$ and $[OH]$ aren't always equal
v. $pH = 1/4 - pOH$
pH decreases as temperature goes up $PH = 1/4 \times 10^{-14}$
vii. $pH = 1/4 \times 10^{-14}$

Warm-Up Question

What is the pH of a 0.50 M HNO₃ solution?

Warm-Up Question

What is the hydrogen ion concentration of a 0.30 M calcium hydroxide solution?

$$POH = -log (0.60)$$

$$= 0.2218...$$

$$PH = 14 - 0.2218...$$

$$= 13.778$$

$$CH^{+}] = 10^{-13.778}$$

$$CH^{+}] = 10^{-13.778}$$

$$CH^{+}] = 10^{-13.778}$$

$$CH^{+}] = 10^{-13.778}$$

Challenge Question I

The hydrogen ion concentration in a 25°C solution is 630 times the concentration of the hydroxide ion. What is the pH of this solution?

$$K_{W} = [H_{3}0^{+}][OH^{-}]$$

$$\chi = \frac{1}{2} [A_{3}0^{+}][OH^{-}]$$

Challenge Question II

Trichloroacetic acid is a harsh chemical, typically used for cosmetic treatments such as tattoo removal. What is the pH of a .0100 M trichloroacetic acid solution (CCl₃COOH)?

$$X = -\frac{B^{+} \sqrt{B^{2} - 4A^{c}}}{2A}$$

$$X = -\frac{B^{+} \sqrt{B^{2} - 4A^{c}}}{2A}$$

$$X = -\frac{2A}{\sqrt{2A}}$$

$$X = -6.00956 = [H^{+}]$$

$$X = -0.21956$$