Exam Review M, 5-6PM BUR 106

CH 302 – Unit 3 Review 3

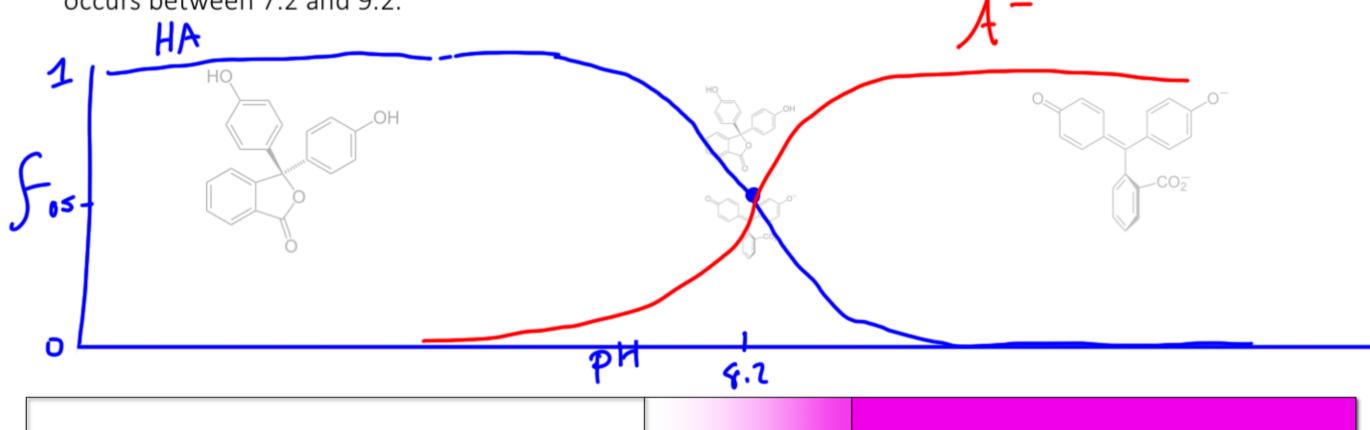
POLYPROTICS, INTRODUCTION TO KSP

$pKa_1 H_2SO_3 \Rightarrow H^+ + HSO_3^ pKa_2 HSO_3^- \Rightarrow H^+ + SO_3^{2-}$

Question

What is the dominant species of sulfurous acid (H₂SO₃) at the following pH values:

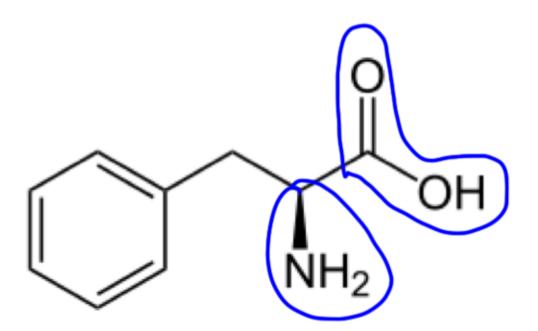
$$pK_{a1} = 1.82$$
 $pK_{a2} = 7.00$ $Q - 1.82$ $PK_{a2} = 7.00$ $PK_{a3} = 1.82$ $PK_{a2} = 7.00$ $PK_{a3} = 1.82$ $PK_{a2} = 7.00$ $PK_{a3} = 1.82$ $PK_{a3} = 7.00$ $PK_{a3} =$


What is the dominant species if 35 g Na_2SO_3 is placed in 233 mL deionized water? What is the pH?

Question

Now consider a different molecule, phenolphthalein. This molecule has only one acidic proton with a p K_a = 8.2. When phenolphthalein is protonated, it is clear. When it is deprotonated, it is pink. What is the **color** at the following pH values?

Dominant Species: Indicators


What is the color of a phenolphthalein solution at pH 4, 12, and 8.2? The color change of phenolphthalein occurs between 7.2 and 9.2.

Big-ass Molecule $P^{k_{\alpha_1}} R^{cooH} \Rightarrow H^+ + R^{coo}$

Consider the molecule below, which is the big-ass molecule phenylaline. This molecule has two functional groups that participate in acid/base chemistry with pKa's of 2.18 and 9.09. Draw this molecule at

physiological pH (pH = 7.35)

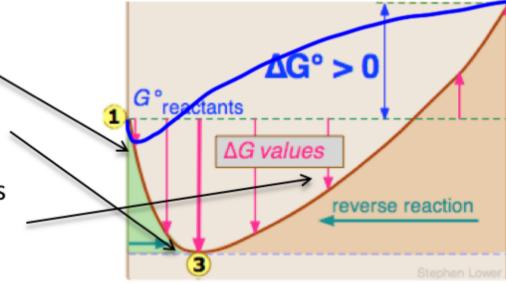
depretenated protonated

NH5

Solubility Equilibria, K_{sp}

K_{SP} IS A UNIQUE FORM OF EQUILIBRIUM THAT QUANTIFIES THE DISSOLUTION OF A SOLID SALT INTO ITS AQUEOUS PRODUCTS.

WE MOSTLY FOCUS ON SPARINGLY SOLUBLE SALTS


K_{sp} , Q_{sp} , and Saturation - Definitions

- Solubility Product (K_{sp}): K_{sp} is a constant that represents the product of all ion concentrations at equilibrium specific to a given salt. This is the K of the salt dissolution reaction.
- Molar Solubility: Solved from K_{sp} , molar solubility represents the maximum amount of solute that can dissolve for a reaction in terms of Molarity (M). This term is represented by the "x" in K_{sp} calculations. This is your best measurement of the solubility of a salt.
- Common Ion Effect: When an ion is already present in solution, the molar solubility of a salt containing that ion significantly decreases.
- Reaction Quotient Solubility Product (Q_{sp}): Q_{sp} is a variable that is calculated by the product of all ion concentrations typically at a point away from equilibrium. Solved in the same way as K_{sp} , Q_{sp} uses experimental values rather than equilibrium values.
- Saturation: when the maximum amount of ions are present in solution $(K_{sp} = Q_{sp})$
 - Saturation is an equilibrium position where Q = K.
 - Dissolution: when $Q_{sp} < K_{sp}$ and your reaction moves forward (solid becomes ions)
 - Precipitation: when $Q_{sp} > K_{sp}$ and your reaction moves backward (ions become solid)

NOT equilibrium

Saturation: Q_{sp} vs. K_{sp}

- K_{sp} represents the ion product of a saturated solution in terms of molar solubility (x). You can think of it as a measurement of the maximum saturation capacity of a solution.
- Q_{sp} represents the ion product of the actual concentrations of ions at any given time. You can control these concentrations experimentally. You can think of Q_{sp} like a starting point
- Remember: K_{sp} is a fixed value; Q_{sp} is defined by the your actual concentrations in your experiment. Therefore, your value of Q_{sp} in relationship to K_{sp} will describe what happens:
 - 1. $Q_{sp} < K_{sp}$ (unsaturated); more solid can dissolve if added to the solution
 - 2. $Q_{sp} = K_{sp}$ (saturated); your reaction is at equilibrium
 - 3. $Q_{sp} > K_{sp}$ (over saturated); precipitation occurs until $Q_{sp} = K_{sp}$

K_{sp} to Molar Solubility

What is the molar solubility of Li_3PO_4 ? The K_{sp} of Li_3PO is 3.2 x 10^{-9} .

$$K_{sp} = [Li^+]^3 [PO_4^{3-}]$$

$$K_{sp} = (3x)^3 x = 27x^4$$

 $R \quad L_{13}POy(s) \stackrel{?}{=} 3Lic_{40} + POy(s)$ $T \quad a \quad l_{0} + C \quad a \quad b \quad a \quad a \quad b \quad a \quad b$

K_{sp} is the "Solubility Product," which is a constant unique to a particular compound that represents the product of ion concentrations that are present at equilibrium

$$\sqrt[4]{\frac{K_{sp}}{27}} = x$$

x represents the "Molar Solubility," which is a direct measurement of solubility. Molar solubility is the concentration of a solute that dissolves in molarity (M) for a reaction.

Solubility Equilibrium Overview

ALL SALT RATIOS

1:1
$$K_{sp} = \chi^2$$

1:2
$$K_{sp} = \frac{4x^3}{}$$

1:3
$$K_{sp} = \frac{1}{27x} \frac{4}{}$$

2:3
$$K_{sp} = \sqrt{08x^5}$$

Question

> Solve for X cannot vely on Ksp

Rank the following molecules according to their molar solubility (lowest molar solubility to highest molar solubility)

1:1 AIPO₄,
$$K_{sp} = 9.8 \times 10^{-21} = \chi^2$$
 $\chi = \sqrt{9.9 \times 10^{-2}} = 9.9 \times 10^{-11}$

1:3 Ba(IO)₃, $K_{sp} = 4.0 \times 10^{-9} = 27 \times 11$ $\chi = \sqrt{1.0 \times 10^{-9}} = 3.5 \times 10^{-3}$

1:1 CuCl, $K_{sp} = 1.7 \times 10^{-7} = \chi^2$ $\chi = \sqrt{1.7 \times 10^{-7}} = 9.9 \times 10^{-11}$

AIPO₄ $\chi = \sqrt{1.7 \times 10^{-7}} = 9.9 \times 10^{-11}$

K_{sp} Question Types

There are three main scenarios of solubility equilibria:

- 1. You add a chunk of a sparingly soluble salt to deionized water and calculate the molar solubility from the $K_{\rm sp}$ and stoichiometry (or vice versa).
 - $K_{sp} = [Pb^{2+}][I^-]^2 = (x)(2x)^2 = 4x^3$
 - x is your molar solubility
- You add a chunk of a sparingly soluble salt to a a solution with a common ion already in solution
 - $K_{sp} = [Pb^{2+}][I^-]^2 = (x)(0.05M 2x)^2 = 4x^3$
 - x is still your molar solubility, but much lower than in the previous example
- You mix two aqueous solutions to perform a double displacement precipitation reaction
 - $Q_{sp} = [Pb^{2+}][I^{-}]^{2}$
 - If Q > K, a precipitate forms

$$PbI_{2}$$
 $K_{Sp} = [Pb^{2+}][I]^{2}$

$$\times (2x)^{2}$$

K_{sp} Scenario One

1. You add a chunk of a sparingly soluble salt to deionized water and calculate the molar solubility from the K_{sp} and stoichiometry (or vice versa).

What is the molar solubility of Pbl_2 ? The K_{sp} of $Pbl_2 = 9.8 \times 10^{-9}$.

- $K_{sp} = [Pb^{2+}][I^-]^2 = (x)(2x)^2 = 4x^3$
- x is your molar solubility

$$\gamma = 3\sqrt{\frac{9.8 \times 10^{-9}}{4}} = 0.0613$$

K_{sp} Scenario Two: Common Ion Effect

2. You add a chunk of a sparingly soluble salt to a a solution with a common ion already in solution. ~ Na I -> Na+ + I-

Consider adding Pbl₂ to a 0.05 M solution of NaI. What is the molar solubility of Pbl_{2} ? The K_{sp} of $Pbl_{2} = 9.8 \times 10^{-9}$.

- x is still your molar solubility, but much lower than in the previous example

PbI₂? The K_{sp} of PbI₂ = 9.8 x 10⁻⁹.

• K_{sp} = [Pb²⁺][I⁻]² = (x)(0.05 M - 2x)² = 4x³

• x is still your molar solubility, but much lower than in the previous example

$$\begin{array}{cccccc}
Pb & T_2 & \Longrightarrow & Pb^{7+} & + & 2 & T \\
\hline
R & Pb & T_2 & \Longrightarrow & Pb^{7+} & + & 2 & T \\
\hline
Chunk & O & O.05 \\
\hline
T & Chunk & +2 x
\end{array}$$

1 15 + 2 X

$$K_{SP} = (X) (0.05 A)^{2}$$

$$X = \frac{9.8 \times 10^{-9}}{0.05^{2}} - 3.9 \times 10^{-6}$$

K_{sp} Scenario Three: Precipitation Reaction

3. You mix two aqueous solutions to perform a double displacement precipitation reaction. P7 Pb (NO3)2 -NaI = 200mL.05 Nal. $K_{Sp} = 9.8 \times 10^{-9}$ Consider adding 100 mL 0.03 M Pb(NO₃)₂ to 100 mL 0.05 Nal.

What is the value of Q_{sp} ? What precipitate, if any, forms? $Q_{sp} = [Pb^{2+}][I^{-}]^{2}$

$$Pb(ANDS)_{2} \stackrel{(ab)}{=} + 2Ma_{1} \stackrel{(ab)}{=} Pb_{2} \stackrel{(ab)}{=} P$$

Preview Slides for Exam Review

K_{SP} WALKTHROUGHS

K_{sp} to Molar Solubility

What is the molar solubility of Li_3PO_4 ? The K_{sp} of Li_3PO_4 is 3.2 x 10^{-9} .

K_{sp} is the "Solubility Product," which is a constant unique to a particular compound that represents the product of ion concentrations that are present at equilibrium

$$K_{sp} = [Li^+]^3 [PO_4^{3-}]$$

$$K_{sp} = (3x)^3 x = 27x^4$$

$$\sqrt[4]{\frac{K_{sp}}{27}} = x$$

$$x = 3.3 \cdot 10^{-3} M$$

x represents the "Molar Solubility," which is a direct measurement of solubility. Molar solubility is the concentration of a solute that dissolves in molarity (M) for a reaction.

K_{sp} and the common ion effect

What is the apparent molar solubility of Li_3PO_4 when added to a 0.5M solution of LiCl? The K_{sp} of Li_3PO_4 is 3.2 x 10^{-9} .

$$K_{sp} = [Li^+]^3 [PO_4^{3-}]$$

$$K_{sp} = (0.5)^3 x$$

K_{sp} remains constant (because it is a constant). Therefore, you should predict that the presence of a common ion decreases the overall "apparent" molar solubility of your compound.

$$x = \frac{K_{sp}}{(0.5)^3} = \frac{K_{sp}}{.125}$$

$$x = 2.56 \cdot 10^{-8} M$$

Notice how the molar solubility here is much less than that of the last problem we solved.

K_{sp} vs. Q_{sp}

What happens when you mix 135mL 0.2M lithium nitrate and 250mL 0.1M potassium phosphate? The K_{sp} of Li_3PO_4 is 3.2 x 10^{-9} .

Here you are given "starting point" concentrations of lithium and phosphate ions. Therefore, your ion product will be Q_{sp}.

$$Q_{sp} = [Li^+]^3 [PO_4^{3-}]$$

$$Q_{sp} = (0.07M)^3 (0.065M) = 2.2 \cdot 10^{-5}$$

$$Q_{sp} > K_{sp}$$

You have oversaturated your solution. The reaction will run backwards until equilibrium is reached, resulting in a solid Li₃PO₄ precipitate.

K_{sp} Solubility Comparison

Which of the following salts is more soluble?

$$Li_3PO_4$$
 (K_{sp} = 3.2 x 10⁻⁹)

or

$$Fe(OH)_2 (K_{sp} = 8 \times 10^{-16})$$

K_{sp} Solubility Comparison

Which of the following salts is more soluble?

$$Li_3PO_4$$
 ($K_{sp} = 3.2 \times 10^{-9}$)

$$Li_3PO_4$$
 ($K_{sp} = 3.2 \times 10^{-9}$)
$$K_{sp} = (3x)^3 x = 27x^4$$

$$\sqrt[4]{\frac{K_{sp}}{27}} = x$$

$$x = 3.3 \cdot 10^{-3} M$$

or

$$Fe(OH)_2 (K_{sp} = 8 \times 10^{-16})$$

$$K_{sp} = (x)(2x)^2 = 4x^3$$

$$\sqrt[3]{\frac{K_{sp}}{4}} = x$$

$$x = 1.2 \cdot 10^{-4} M$$