HW08 - Enthalpy & Fossil Fuels (NOTE: the links in this pdf do not work. The links are active when inside of canvas.) You might need to grab some data from here for the bond energy problems. Stuck on bomb calorimeters? Here's a video: Thermodynamics - Calorimetry Pt II - Bomb Calorimeter Example	
1 6 points A 1.00 g sample of n-hexane (Combonia bomb calorimeter. The temperation 26.15°C to 29.97°C. The hocalorimeter (everything that is not seen a calorimeter).	metry - Part I $_{6}$ H ₁₄) undergoes complete combustion with excess O ₂ in a ture of the 1815 g of water surrounding the bomb rises neat capacity of the hardware component of the not water) is 5068 J/°C. What is the hardware in energy for the hole of n-C ₆ H ₁₄ is 86.1 g. The specific heat of water is
4.184 J/g.°C. O -6.33 x 10 ⁴ kJ/mol O -4.40 x 10 ³ kJ/mol O -4.16 x 10 ³ kJ/mol O -5.25 x 10 ³ kJ/mol	
An unknown fuel distilled in a recalorimeter holding 991 mL was	lit for each part of this question. efinery (molar mass 64.0 g/mol) is combusted in a bomb ter. When 0.182 grams of the fuel source is combusted in verature of the surroundings raises from 25.0 °C to 27.2 °C. ware component is 2.260 kJ/ °C. The heat capacity of water
In a bomb calorimeter, the the The combustion of the fuel to	hat we are measuring here is The enthalpy of this reaction is equal to kJ. The enthalpy per gram of this reaction is about
kJ/g. The enthalpy per mole of the state of	kJ/mol.
iii endothermic iii -26.8 iii -8.36 iii -1210 iii -120.9 iii -163.8	3 -8.37 -22.1 -8.73 -14.1 -2.56 -22.1 -77.4 -4956 -1.209 -288 -460.7
3 6 points Calculate the change in enthalp data:	y of the following reaction in kJ/mol using bond energy CIF + CO → COCIF
H	ovided, calculate Δ H for the following reaction: $_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ Bond Bond Energy (kJ/mol) H-H 436 CI-CI 242 H-CI 432
○ 186 kJ/mol○ -186 kJ/mol○ -246 kJ/mol○ 246 kJ/mol	
	y of the following reaction using bond energy data: H ₄ (g) + H ₂ (g) → 2NH ₃ (g)
6 6 points What is the value of heat flow for process is -286 kJ/mol. O -572 kJ/g O 572 kJ/g O -71.5 kJ/g O -286 kJ/g O -143 kJ/g	for the combustion of hydrogen in kJ/g ? ΔH° for this
answer to this is exact based on integer (4 digits to be exact) and QUESTION: Using only our table heptane. Know this: The answer	ou to be completely precise and accurate. The numeric the numbers that you have to use. So the answer is a large I need you to be EXACTLY right on this. of bond energies, calculate the heat of combustion for is a positive value because it is the amount of heat given stion of exactly one mole of heptane. Your answer has to heptane.
Which of the following is the magram? wood coal octane methane hydrogen	ost efficient fuel based on its combustion enthalpy per
9 6 points What is the more efficient methors from the refinery down to a specific fuel? Oreforming Othermal cracking Ofractional distillation Ocatalytic cracking	nod to break a high molar mass fraction from a crude oil
An octane isomer can be made process of	into a more efficient fuel by adding branching through the
If you want to calculate the hearyou use? $Q = mC_s \Delta T$ $Q = m\Delta H$ $Q = mC$ ΔT $Q = m\Delta H$ $Q = mC$ ΔT $Q = mC$ $Q = mC$ ΔT $Q = mC$ $Q = mC$ ΔT $D = mC$ $D = m$	t flow involving a temperature change, which equation will onds forming
12 4 points If you want to calculate the heatuse? $Q = m\Delta H_{trans}$ $Q = mC$ $Q = mC$ $Q = 2(m - C_s\Delta T)$ $Q = mC_s\Delta T$	t flow involving a phase change, which equation will you
O Σn bonds breaking -Σn bo 4 points Designate the sign of the head Vaporization:	onds forming at flow (+ or -) for each of the following physical changes:

Fusion:

14

15

16

17

18

19

5 points

number.

nearest whole number.

three significant figures.

6631 J

6735 J

6610 J

229 J

125 J

joules to the nearest whole number.

gaseous Ar at 5 °C above its boiling point?

of kJ and round toone decimal place.

°C to 84 °C and use it to answer the next four questions.

Sublimation:

What is the heat required to completely melt a 11.33 g sample of silicon (Si, molar mass = 28.09 g/mol) solid that is already at its melting point? ΔH_{fus} = 50.2 kJ/mol. Answer in units

(Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from -18.0

What is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole

(Part 2 of 4) What is the heat required to fully melt the ice at 0 °C? Answer in joules to the

(Part 3 of 4) What is the heat required to heat the water from 0 °C to 84 °C? Answer in

(Part 4 of 4) What is the total heat applied during this process? Answer in kilojoules (!) to

The specific heat for liquid argon and gaseous argon is 25.0 J/mol·°C and 20.8 J/mol·°C, respectively. The enthalpy of vaporization of argon is 6506 J/mol. How much energy is required to convert 1 mole of liquid Ar from 5 °C below its boiling point to 1 mole of

Freezing: