Note	sider the following unbalanced reaction: $AgNO_3 + K_3PO_4 \rightarrow Ag_3PO_4 + KNO_3$ t is the sum of the coefficients in the balanced reaction? Example: If there is no coefficient, the coefficient is an understood 1.
J O O O C	85634
	10 points rogen peroxide (H_2O_2) liquid decomposes into hydrogen gas and oxygen gas. Whice
Note hydr	e following represents this reaction? e: phases are omitted in the answer choices, but do remember the standard state of ogen and oxygen gas. $H_2O_2 \rightarrow H_2 + O_2$ $H_2 + O_2 \rightarrow H_2O_2$
0	$2H_2+O_2 \rightarrow 2H_2O_2$ $2H_2O_2 \rightarrow 2H_2+O_2$ $H_2O_2 \rightarrow 2H+2O$
∎ In wl	points nich state of matter are the molecules all spread out? This means the distance ween the molecules is much larger than the size of the molecules themselves. gas
O O — 4 p	liquid solid solid
Wha	t are the key physical properties of solids? the molecules are very close to each other molecules are in static positions relative to neighboring molecules molecules are in constant translational motion relative to each other
	molecules are very far apart from each other molecules are very close to each other but also move considerably among themselves
Whic	ch of the following substances listed has the smallest percentage in the make up of ypical composition of air here in Austin, TX on a humid day? argon (Ar) nitrogen (N_2) oxygen (O_2) carbon dioxide (CO_2) water (H_2O)
	ch of the following layers of the atmosphere is closest to the ground? Troposphere Ozone Stratosphere Mesosphere
Whic desc	oints ch of the following simple ratios of nitrogen to oxygen is the most accurate for ribing the air on this planet. s are all written as nitrogen: oxygen)
0000	4:1 1:2 2:1 3:2 3:1
· ·	ch of the following substances is most variable in our atmosphere? Water vapor Carbon dioxide Nitrogen Argon
	oints t is the name and the approximate molar mass of C ₅ H ₁₂ ? Heptane, 74 g/mol
0000	Pentane, 68 g/mole Hexane, 72 g/mol Pentane, 72 g/mol Pentane, 74 g/mol
0 0 	Hexane, 86 g/mol Pentonium, 72 g/mol
	ch carbon compound contains the fewest carbon atoms? Methane Hexane Propane
	Chlorobutane oints ording to Boyle's Law, pressure and volume have a(n)
0 0 0 0	indirect relationship direct relationship inverse relationship none of these are correct
An ir	oints offlated balloon has a volume equal to 2.3 L at 20°C. When the temperature is ced to 10°C, the volume
	doubles is halved decreases by a small amount increases by a small amount
A sm	oints I all quantity of neon gas is held in a 150 mL container at 1.11 atm and 27 °C. How I moles of gas are in this container? 8.87 x 10 ⁻⁶ mol
0 0 0	7.51 x 10 ⁻² mol 6.76 x 10 ⁻³ mol 4.50 mol
	200. mol points lytic converters reduce the amount of in car exhaust. CO
000	O_3 CO_2 N_2
	oints two most abundant gases in an inhaled breath are Nitrogen and oxygen
000	Nitrogen and water vapor Oxygen and carbon dioxide Carbon dioxide and nitrogen
The a	oints air we exhale contains about 100 times more of which gas than the air we breathe the atmosphere? Carbon dioxide Argon
0 0 -	Oxygen Nitrogen
	ch pollutant is present as a solid particulate in air? Soot Ozone Carbon monoxide
	Sulfur dioxide oints ch of the following pollutants cannot be detected by odor?
0	CO O_3 NO_X SO_X
Refe	oints r to the graph of elevation vs pressure found <u>here</u> . What is the approximate pressur Pa) at 4500 m altitude?
0	57 kPa 50 kPa 60 kPa 63 kPa
∎ The l	45 kPa points hike from Mt. Everest basecamp straight to the summit is only about 13 miles.
How altitu	ever, when you consider the need to gradually acclimate to intense increases in ide, summiting Mt. Everest takes over a month and a half to complete. How does to sense with our discussion about the atmosphere? As you go up in elevation, the trend in air pressure is inconsistent. The body need to adjust to the inconsistency in air pressure.
0	As you go up in elevation, the air pressure decreases. When the available oxygen decreases, the body needs time to adjust. As you go up in elevation, the air pressure increases. When the available oxygen increases, the body needs time to adjust.
A pit an ar ppm	fall (or slight plot hole) of Dr. Mann's planet in the movie Interstellar was that it had
_i es	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm.
Ans:	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. variable pe your answer
4 po One the g block billio	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. Decimits of the coolest science experiments ever done is the Miller-Urey experiment, where gases of the primordial earth were combined in a closed system to see if the buildings of life (amino acids, RNA, etc.) could have been created by natural forces several ans of years ago. These gases are H ₂ O, CH ₄ , NH ₃ , and H ₂ . What is the total pressure gas mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551
4 po One the g block billio	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. Dee your answer Dee your answer.
Ansi Type One the general billion of a general tension of the second of	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. Decimits of the coolest science experiments ever done is the Miller-Urey experiment, where cases of the primordial earth were combined in a closed system to see if the building so of life (amino acids, RNA, etc.) could have been created by natural forces several ns of years ago. These gases are H ₂ O, CH ₄ , NH ₃ , and H ₂ . What is the total pressure gas mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551 H ₂ ? Assume no reaction occurs. 0.886 atm 0.662 atm
Ansi Typ A po One the g block billio of a g atm O O O A po 4 po	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. Decimits of the coolest science experiments ever done is the Miller-Urey experiment, where cases of the primordial earth were combined in a closed system to see if the buildir cs of life (amino acids, RNA, etc.) could have been created by natural forces several ns of years ago. These gases are H ₂ O, CH ₄ , NH ₃ , and H ₂ . What is the total pressure gas mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551 H ₂ ? Assume no reaction occurs. 0.886 atm 1.000 atm 1.551 atm 1.382 atm
Ansi Typi A per One globook billion of a grant of a gr	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. Dee your answer Dee your answer.
Ansi Typi 4 pe One the geblock billion of a gebloc	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. Dee your answer Dee your answer.
Ansi Typ 4 pe One the g block billio of a g atm A 34 O A 34 O A 34 A gas	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. were to 4 decimal places. December your answer December of the coolest science experiments ever done is the Miller-Urey experiment, when takes of the primordial earth were combined in a closed system to see if the building so of life (amino acids, RNA, etc.) could have been created by natural forces several not of years ago. These gases are H ₂ O, CH ₄ , NH ₃ , and H ₂ . What is the total pressure gas mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551 H ₂ ? Assume no reaction occurs. 0.886 atm 0.662 atm 1.000 atm 1.551 atm 1.382 atm Doints L container holds 0.80 moles of gas at 300 K. What is the pressure (in atm)? 0.58 atm 20 atm 440 atm 1.2 atm Doints s is expanded from 3.60 L and 76.8 kPa to 8.10 L at constant temperature. What is the pressure? 2240 kPa 34.1 kPa
Ansi Tyr One the gentle billion of a gentle	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm.] wer to 4 decimal places. De your answer Description of the coolest science experiments ever done is the Miller-Urey experiment, whereases of the primordial earth were combined in a closed system to see if the buildir so of life (amino acids, RNA, etc.) could have been created by natural forces several ns of years ago. These gases are H ₂ O, CH ₄ , NH ₃ , and H ₂ . What is the total pressure gas mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551 H ₂ ? Assume no reaction occurs. 0.886 atm 0.662 atm 1.000 atm 1.551 atm 1.382 atm Dints L container holds 0.80 moles of gas at 300 K. What is the pressure (in atm)? 0.58 atm 20 atm 440 atm 1.2 atm Dints sis expanded from 3.60 L and 76.8 kPa to 8.10 L at constant temperature. What is mal pressure? 2240 kPa 34.1 kPa 173 kPa 68.2 kPa 9.48 kPa 86.4 kPa
Ansi Tyr One the gentle billion of a gentle	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethal</i> partial sure in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm.] wer to 4 decimal places. De your answer Description of the coolest science experiments ever done is the Miller-Urey experiment, where agases of the primordial earth were combined in a closed system to see if the building so of life (amino acids, RNA, etc.) could have been created by natural forces several ns of years ago. These gases are H ₂ O, CH ₄ , NH ₃ , and H ₂ . What is the total pressure gas mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551 H ₂ ? Assume no reaction occurs. 0.886 atm 0.662 atm 1.000 atm 1.551 atm 1.382 atm Dints L container holds 0.80 moles of gas at 300 K. What is the pressure (in atm)? 0.58 atm 20 atm 440 atm 1.2 atm Dints s is expanded from 3.60 L and 76.8 kPa to 8.10 L at constant temperature. What is mal pressure? 2240 kPa 34.1 kPa 173 kPa 68.2 kPa 9.48 kPa 86.4 kPa 9.48 kPa 86.4 kPa Dints Dints
Ansiblock billion of a gast block block billion of a gast block bl	or a mole fraction of only 0.005. Use Dalton's Law to calculate the lethid partial size in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. wer to 4 decimal places. The your answer
Ansiblock billion of a gast block block billion of a gast block billion of a gast block bl	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethol</i> partial size in atm of NH ₃ if the ambient pressure of Dr. Mann's planet is 2.52 atm. were to 4 decimal places. Decimination of the coolest science experiments ever done is the Miller-Urey experiment, when asses of the primordial earth were combined in a closed system to see if the building so filter famion acids, RNA, etc.) could have been created by natural forces several no of years ago. These gases are H ₂ O, CH ₄ , NH ₉ , and H ₂ . What is the total pressure gas mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551 H ₂ P. Assume no reaction occurs. 0.886 atm 0.662 atm 1.000 atm 1.551 atm 1.382 atm 20 atm 440 atm 1.2 atm 2240 kPa 34.1 kPa 173 kPa 68.2 kPa 9.48 kPa 86.4 kPa 9.48 kPa 86.4 kPa 9.48 kPa 86.4 kPa 9.48 kPa 86.4 kPa 9.0038 moles 29 moles 3.6 moles 1.8 moles
Ansi Tyli One globoli of a glob	or a mole fraction of only 0.005. Use Dalton's Law to calculate the lether partial sure in a two fNHgif the ambient pressure of Dr. Mann's planet is 2.52 atm. were to 4 decimal places. De your answer
Ansilone and Ooo Ooo Apple And Ooo Ooo Apple And Ooo Ooo Ooo Apple And Ooo Ooo Ooo Ooo Ooo Ooo Ooo Ooo Ooo Oo	or a mole fraction of only 0.005. Use Dalton's Law to calculate the <i>lethol partial</i> ure in atm of NH ₂ if the ambient pressure of Dr. Mann's planet is 2.52 atm.] wer to 4 decimal places. be your answer be your answer coints of the coolest science experiments ever done is the Miller-Urey experiment, when aces of the primordial earth were combined in a closed system to see if the buildir so of life (amino acids, RNA, etc.) could have been created by natural forces several nos of years ago. These gases are Hyo. Crls, NH ₂ and Hy. What is the total pressure as mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₄ , 0.119 atm NH ₃ and 0.0551 H ₂ ? Assume no reaction occurs. 0.886 atm 0.662 atm 1.000 atm 1.551 atm 1.382 atm beints L container holds 0.80 moles of gas at 300 K. What is the pressure (in atm)? 0.58 atm 20 atm 440 atm 1.2 atm beints is expanded from 3.60 L and 76.8 kPa to 8.10 L at constant temperature. What is not pressure? 2.240 kPa 34.1 kPa 17.3 kPa 68.2 kPa 9.48 kPa 86.4 kPa 0.018 moles 1.8 moles 1.8 moles 1.8 moles 1.8 moles 1.8 moles 1.9 mole as a unique compound because it has a relatively high density (6.17 g/L, to be exact the being a gas at room temperature. How many moles are present in a 48.0 L ainer filled with \$F_6? 1.56 mol 7.78 mol 4.44 mol 2.03 mol 0.328 mol 18.8 mol
Ansilone and Ooo Ooo Apple And Ooo Ooo Apple And Ooo Ooo Ooo Apple And Ooo Ooo Ooo Ooo Ooo Ooo Ooo Ooo Ooo Oo	or a mole fraction of only 0.005. Use Dalton's Law to calculate the fethal partial user in atm of NH ₃ (the ambient pressure of Dr. Mann's planet is 2.52 atm.) were to 4 decimal places. be your answer co iffe (animo acids, RNA, etc.) could have been created by natural forces sever as of years ago. These gases are H-DO, CHe, NH ₃ and H ₂ . What is the total pressure sensor years more acid on occurs. 0.886 atm 0.662 atm 1.000 atm 1.551 atm 1.382 atm be your answer 2.568 atm 1.892 atm be your answer 2.240 kPa 3.1.1 kPa 1.73 kPa 6.8.2 kPa 9.48 kPa 8.6.4 kPa be your answer 2.240 kPa 3.6.1 kPa 1.78 moles 2.9 moles 1.8 moles beints 1.8 moles beints 1.8 moles beints 1.8 moles beints 1.8 moles 1.9 mol 1.92 h H ₂ O(P) — HNO ₃ (aq) + NO(g) balance the reaction. Then calculate the volume of NO gas produced when 0.952 and of NO ₂ are acceted to completion with excess 150 at STP. 4.80 L 7.11 L 4.88 L
Ansilo One general	or a mole fraction of only 0.005. Use Dalton's Law to calculate the lethic patients of 252 arms were to 4 decimal places. ***Power to 4 decimal places.** ***Power to 5 decimal places.** ***Power to 4 decimal places.** ***Power to 5 decimal places.** ***Power to 4 decimal places.** ***Power
Ansilo One globolishing at the	or a mole fraction of only 0.00s. Use Dalton's Law to calculate the lethol partial user in atm of NH; if the ambient pressure of Dr. Mann's planet is 2.52 atm] were to 4 decimal places. be your answer constant the pressure in a thing and your answer and your answer constant the pressure (in atm)? be your answer constant the pressure (in atm)? be your answer constant temperature. What is the pressure (in atm)? constant temperature. What is the pressure (in atm)? constant temperature. What is the pressure (in atm)? constant temperature and the pressure (in atm)? constant temperature and to a start temperature and to a start temperature and to a start temperature and your answer. constant the your answer constant the your answer constant temperature and your answer constant temperature and your answer constant temperature be your answer constant temperature con your answer con your answer con your answer con
Ansignation of the grade of the	or a mole fraction of only 0.005. Use Dalton's Law to calculate the fethal partial parties in atm of NHs (if the ambient pressure of Dr. Mann's planet is [25] attinuous to 4 decimal places. be your answer delts of the coades science coordinates over done is the Miller-Usey experiment, where sees of the primordial path were combined in a closed system to see if the balliding of the primordial path were combined in a closed system to see if the balliding of the primordial path were combined in a closed system to see if the balliding of the primordial path were combined in a closed system to see if the balliding of the primordial path were combined in a closed system to see if the balliding of the pressure pass mixture containing 0.501 atm H ₂ O, 0.211 atm CH ₆ 0.119 atm NH ₉ and 0.0551 atm 1.000 atm 1.551 atm 1.000 atm 1.551 atm 1.382 atm 1.000 atm 1.551 atm 1.382 atm 1.000 atm 1.254 atm 1.000 atm 1.254 atm 1.000 atm
Ansignation And And And And And And And And And An	or a mole fraction of only 0.005. Use Dations tave to calculate the lefthol partial urve in an of NH ₂ the ambient pressure of Dr. Mann's planet is 252 and were to 4 declinal places. The service of the coolest orients experiments ever done is the Miller-University of the coolest orients experiments ever done is the Miller-Universe experiment, when asked of the primordial earth were combined in a closed system to see if the buildins of left lamino acids. RNA, etc.) could have been created by natural forces several not years ago. These gases are H ₂ O, 0.211 arm CH ₂ , 0.119 atm NH ₂ and 0.0551 H ₂ A assume no reaction occurs. 0.866 atm 0.662 atm 1.000 atm 1.551 atm 1.382 atm 1.551 atm
Ansignation And And And And And And And And And An	or a mole fraction of only 0.005. Use Dation's tay to calculate the lefthof partial user in an of NH ₂ if the ambient pressure of Dr. Mann's planet is 2.52 arms were to 4 declinal places. only your answer. only your answer. only your answer. only your answer. only the collection of the collect

Reactants: 2 octane, 25 carbon dioxide

Products: 18 carbon dioxide, 16 water

Products: 16 oxygen, 18 water

Reactants: 25 octane, 2 oxygen