1 point A 100 W electric heater (1 W = 1 J/s) operates for 11 min to heat the gas in a cylinder. At the same time, the gas expands from 1 L to 6 L against a constant atmospheric pressure of 3.527 atm. What is the change in internal energy of the gas? 48.37 kJ 62.47 kJ 64.21 kJ
2 1 point The definition of internal energy is ΔU = q + w Which of these three values are state functions? Select all of the correct answers. q ω ΔU
3 1 point When 2.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston with an external pressure of 2.00 atm, the nitrogen gas expands from 2.00 to 5.00 L. What is the change in internal energy of this system? -0.608 kJ +2.61 kJ -2.61 kJ
 0 +1.39 kJ 4 1 point A system had 150 kJ of work done on it and its internal energy increased by 60 kJ. How much energy did the system gain or lose as heat? The system lost 210 kJ of energy as heat. The system gained 60 kJ of energy as heat.
The system gained 90 kJ of energy as heat. The system lost 90 kJ of energy as heat. The system gained 210 kJ of energy as heat. 1 point If a process is carried out at constant pressure and the volume of the system decreases,
then ΔV is and the work is iii positive
Which of the following will best help determine the direction of heat flow in a system? enthalpy temperature internal energy pressure work
 The internal energy of the universe is always increasing. The universe is an isolated system. Internal energy lost by a system is always gained by the surroundings.
What is the value of work when a piston of volume 0.2 L expands against an external pressure of 200 kPa to a volume of 3.4 L? 3.40 kJ -3.40 kJ -640 J 640 J
 y I point When 4.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston at an external pressure of 3.00 atm, the nitrogen gas expands from 1.00 L to 4.00 L against this constant pressure. What is ΔU for the process? Note: 1 L· atm = 0.1013 kJ. -0.912 kJ +3.09 kJ -4.91 kJ +4.91 kJ
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of wat at 21 °C. The final temperature of the mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no energy lost to the surroundings. 9.5 J g ⁻¹ °C ⁻¹ 1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹ -1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹ -9.5 J g ⁻¹ °C ⁻¹
A piece of metal with a mass of 51.6 g at 92.2 °C is placed in a calorimeter containing 100 m of water at 23.6 °C. The final temperature of the mixture is 27.2 °C. What is the specific hear capacity of the metal? 0.951 J/g °C 0.129 J/g °C 0.412 J/g °C 0.449 J/g °C 0.385 J/g °C
Consider the following specific heat capacities: H ₂ O (s) = 2.09 J/g·°C H ₂ O (l) = 4.18 J/g·°C H ₂ O (g) = 2.03 J/g·°C The heat of fusion for water is 334 J/g and its heat of vaporization is 2260 J/g. Calculate the amount of heat required to convert 93 g of ice at -36°C completely to liquid water at 35°C. 7 kJ 52 kJ 38 kJ 21 kJ
12 1 point The specific heat for liquid argon and gaseous argon is 25.0 J/mol·°C and 20.8 J/mol·°C, respectively. The enthalpy of vaporization of argon is 6506 J/mol. How much energy is required to convert 1 mole of liquid Ar from 5°C below its boiling point to 1 mole of gaseous Ar at 5°C above its boiling point? 125 J 229 J 6610 J 6735 J
14 1 point What mass of liquid ethanol (C ₂ H ₅ OH) must be burned to supply 500 kJ of heat? The standard enthalpy of combustion of ethanol at 298 K is -1368 kJ/mol. 10.9 g 126 g 16.8 g 29.7 g
15 1 point Burning 1 mol of methane in oxygen to form CO ₂ (g) and H ₂ O (g) produces 803 kJ of energy. How much energy is produced when 3 mol of methane is burned? 803 kJ 268 kJ 1606 kJ 2409 kJ
Consider the following chemical equation: $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$ $\Delta H = -2220 \text{ kJ/mol rxn}$ How much thermal energy is given off when 11.0 g of propane gas (C_3H_8) is burned at constant pressure? 26.0 kJ 2220 kJ 1670 kJ
17 1 point For a certain reaction at constant pressure, the change in internal energy is -52 kJ. In addition, the system does 46 kJ of expansion work. What is ΔH for this process? 98 kJ -98 kJ -6 kJ 6 kJ
18
The specific heats and densities of several materials are given below: Material Specific Heat (cal/g.°C) Density (g/cm³) Brick 0.220 2.0 Concrete 0.270 2.7 Steel 0.118 7 Water 1.00 1.00 Calculate the change in temperature produced by the addition of 1 kcal of heat to 100 g of steel
1.43°C 37.0°C 84.7°C 1.18°C 1 point A 1.00 g sample of <i>n</i> -hexane (C ₆ H ₁₄) undergoes complete combustion with excess O ₂ in a bomb
calorimeter. The temperature of the 1502 g of water surrounding the bomb rises from 22.64°C to 29.30°C. The heat capacity of the hardware component of the calorimeter (everything that is not water) is 4042 J/°C. What is ΔU for the combustion of <i>n</i> -C ₆ H ₁₄ ? One mole of <i>n</i> -C ₆ H ₁₄ is 86.1 g. The specific heat of water is 4.184 J/g.°C. -9.96 x 10 ³ kJ/mol -5.92 x 10 ³ kJ/mol -4.52 x 10 ³ kJ/mol -1.15 x 10 ⁴ kJ/mol
When 0.485 g of compound X is burned completely in a bomb calorimeter containing 3000 g of water, a temperature rise of 0.285°C is observed. What is ΔU of the reaction for the combustion of compound X? The hardware component of the calorimeter has a heat capacity of 3.81 kJ/°C. The specific heat of water is 4.184 J/g·°C, and the MW of X is 56.0 g/mol. -4660 kJ/mol 4660 kJ/mol 538 kJ/mol -538 kJ/mol
Nitric acid can be manufactured in a multi-step process, during which nitric oxide is oxidized to create nitrogen dioxide. $2NO\left(g\right)+O_{2}\left(g\right)\rightarrow2NO_{2}\left(g\right)$ Calculate the standard reaction enthalpy for the above reaction using the following thermodynamic data. $N_{2}\left(g\right)+O_{2}\left(g\right)\rightarrow2NO\left(g\right)\Delta\text{H}^{\circ}{}_{1}=180.5\text{ kJ/mol rxn}$ $N_{2}\left(g\right)+2O_{2}\left(g\right)\rightarrow2NO_{2}\left(g\right)\Delta\text{H}^{\circ}{}_{2}=66.4\text{ kJ/mol rxn}$ -246.9 kJ/mol rxn -252.4 kJ/mol rxn -100.3 kJ/mol rxn -114.1 kJ/mol rxn
Calculate the standard reaction enthalpy for the following chemical equation.
Calculate the standard enthalpy change for the following chemical equation. $ 2HCI(g) + F_2(g) \rightarrow 2HF(I) + CI_2(g) $ Use the following thermochemical equations to solve for the change in enthalpy. $ 4HCI(g) + O_2(g) \rightarrow 2H_2O(I) + 2CI_2(g) \qquad \Delta H^\circ = -202.4 \text{ kJ/mol rxn} $ $ \frac{1}{2}H_2(g) + \frac{1}{2}F_2(g) \rightarrow HF(I) \qquad \Delta H^\circ = -600.0 \text{ kJ/mol rxn} $ $ H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I) \qquad \Delta H^\circ = -285.8 \text{ kJ/mol rxn} $
+1088.2 kJ/mol rxn +516.6 kJ/mol rxn -1116.6 kJ/mol rxn +1015.4 kJ/mol rxn +1116.6 kJ/mol rxn -516.6 kJ/mol rxn -1587.2 kJ/mol rxn -1015.4 kJ/mol rxn -1088.2 kJ/mol rxn +1587.2 kJ/mol rxn
Calculate the standard enthalpy change for the following chemical equation. $ 4 \text{FeO (s)} + O_2(g) \rightarrow 2 \text{Fe}_2 O_3(s) $ Use the following thermochemical equations to solve for the change in enthalpy. $ \text{Fe (s)} + \frac{1}{2}O_2(g) \rightarrow \text{FeO (s)} \qquad \Delta \text{H} = -269 \text{ kJ/mol} $ $ 2 \text{Fe (s)} + \frac{3}{2}O_2(g) \rightarrow \text{Fe}_2 O_3(s) \qquad \Delta \text{H} = -825 \text{ kJ/mol} $ $ 556 \text{ kJ/mol} \qquad -2726 \text{ kJ/mol} $ $ 574 \text{ kJ/mol} \qquad -556 \text{ kJ/mol} $ $ -574 \text{ kJ/mol} $
Calculate the enthalpy change for the following chemical equation. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ Use the following thermochemical data to solve for the change in enthalpy. $\Delta H_f \text{ for } SO_2(g) = -16.9 \text{ kJ/mol}$ $\Delta H_f \text{ for } SO_3(g) = -21.9 \text{ kJ/mol}$ -77.6 kJ/mol rxn -5.0 kJ/mol rxn $+5.0 \text{ kJ/mol rxn}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Calculate the average S–F bond energy in SF ₆ using the following ΔH_f values: $SF_6 (g) = -1209 \text{ kJ/mol}$ $S (g) = 279 \text{ kJ/mol}$ $F (g) = 79 \text{ kJ/mol}$ 289 kJ/mol bonds 196 kJ/mol bonds 327 kJ/mol bonds 416 kJ/mol bonds
29 1 point Using the bond energy data provided, calculate ΔH for the following reaction: $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
H-Cl 432 kJ/mol 186 kJ/mol 246 kJ/mol -186 kJ/mol 1 point The standard molar enthalpy of formation of NH ₃ (g) is -46.11 kJ/mol. What is the standard
The standard molar enthalpy of formation of NH ₃ (g) is -46.11 kJ/mol. What is the standard molar internal energy of formation of NH ₃ (g)? -48.59 kJ/mol 2433 kJ/mol

-43.63 kJ/mol

-2525 kJ/mol

HW13 - 1st Law and Calorimetry