HW13 - 1st Law and Calorimetry

1 point A 100 W electric heater (1 W = 1 J/s) operates for 11 min to heat the gas in a cylinder. At the same time, the gas expands from 1 L to 6 L against a constant atmospheric pressure of 3.527 atm. What is the change in internal energy of the gas?	7 1 point Which of the following statements concerning the first law of thermodynamics is/are true? Select all of the correct answers. The internal energy of the universe is always increasing.
○ 48.37 kJ	The universe is an isolated system.
○ 62.47 kJ	Internal energy lost by a system is always gained by the surroundings.
○ 67.79 kJ	
○ 64.21 kJ	
	8 1 point What is the value of work when a piston of volume 0.2 L expands against an external pressure of
2 1 point	200 kPa to a volume of 3.4 L?
The definition of internal energy is	○ 3.40 kJ
$\Delta U = q + w$ Which of these three values are state functions? Select all of the correct answers.	○ -3.40 kJ
q	○ -640 J
□ w	○ 640 J
Δυ	
	9 1 point
1 point When 2.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston with an external pressure of 2.00 atm, the nitrogen gas expands from 2.00 to 5.00 L. What is the change in internal energy of this system?	When 4.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston at an external pressure of 3.00 atm, the nitrogen gas expands from 1.00 L to 4.00 L against this constant pressure. What is ΔU for the process? Note: 1 L· atm = 0.1013 kJ. -0.912 kJ
○ -0.608 kJ	+3.09 kJ
+2.61 kJ	○ -4.91 kJ
○ -2.61 kJ	+4.91 kJ
O 0	
+1.39 kJ	19 1 point
A system had 150 kJ of work done on it and its internal energy increased by 60 kJ. How much energy did the system gain or lose as heat? The system lost 210 kJ of energy as heat. The system gained 60 kJ of energy as heat. The system gained 90 kJ of energy as heat. The system lost 90 kJ of energy as heat. The system gained 210 kJ of energy as heat.	A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of wate at 21 °C. The final temperature of the mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no energy lost to the surroundings: 9.5 J g ⁻¹ °C ⁻¹ 1.3 × 10 ⁴ J g ⁻¹ °C ⁻¹ -9.5 J g ⁻¹ °C ⁻¹ 1 point
5 1 point	A piece of metal with a mass of $51.6\mathrm{g}$ at $92.2^{\circ}\mathrm{C}$ is placed in a calorimeter containing $100\mathrm{mL}$ of water at $23.6^{\circ}\mathrm{C}$. The final temperature of the mixture is $27.2^{\circ}\mathrm{C}$. What is the specific heat capacity of the metal?
If a process is carried out at constant pressure and the volume of the system decreases,	0.951 J/g °C
then ΔV is	○ 0.129 J/g °C
and the work is	O.412 J/g °C
	○ 0.449 J/g °C
iii positive iii negative iii positive iii negative iii zero	○ 0.385 J/g °C
6 1 point Which of the following will best help determine the direction of heat flow in a system? enthalpy temperature internal energy pressure work	Consider the following specific heat capacities: H ₂ O (s) = 2.09 J/g°C H ₂ O (l) = 4.18 J/g°C H ₂ O (g) = 2.03 J/g°C The heat of fusion for water is 334 J/g and its heat of vaporization is 2260 J/g. Calculate the amount of heat required to convert 93 g of ice at -36°C completely to liquid water at 35°C. 7 kJ 52 kJ 38 kJ 21 kJ

12 1 point	17 1 point
The specific heat for liquid argon and gaseous argon is 25.0 J/mol-°C and 20.8 J/mol-°C, respectively. The enthalpy of vaporization of argon is 6506 J/mol. How much energy is required	For a certain reaction at constant pressure, the change in internal energy is -52 kJ. In addition, the system does 46 kJ of expansion work. What is ΔH for this process?
to convert 1 mole of liquid Ar from 5°C below its boiling point to 1 mole of gaseous Ar at 5°C	98 kJ
above its boiling point? 125 J	○ -98 kJ
229 J	
	○ 6 ⋈
○ 6610 J	
() 6735 J	
○ 6631 J	18 1 point If the products of a reaction have higher energy than the reactants, then the reaction
	is endothermic.
13 1 point	is not spontaneous.
Carbon monoxide reacts with oxygen to form carbon dioxide by the following reaction: $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$	is exothermic.
ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon	must be spontaneous.
monoxide reacted with sufficient oxygen to produce carbon dioxide? Use only the information provided in this question.	
○ 135 kcal	
812 kcal	19 1 point The specific heats and densities of several materials are given below:
1620 kcal	Material Specific Heat (cal/g-°C) Density (g/cm²)
○ 412 kcal	Brick 0.220 2.0
	Concrete 0.270 2.7
14 1 point	Steel 0.118 7
What mass of liquid ethanol (C ₂ H ₅ OH) must be burned to supply 500 kJ of heat? The standard	Water 1.00 1.00 Calculate the change in temperature produced by the addition of 1 kcal of heat to 100 g of stee
enthalpy of combustion of ethanol at 298 K is -1368 kJ/mol.	○ 1.43°C
○ 10.9 g	○ 37.0°C
○ 126 g	○ 84.7°C
○ 16.8 g	○ 1.18°C
O 29.7 g	
	20 1 point
15 1 point	A 1.00 g sample of <i>n</i> -hexane (C_6H_{14}) undergoes complete combustion with excess O_2 in a bomb
Burning 1 mol of methane in oxygen to form $CO_2(g)$ and $H_2O(g)$ produces 803 kJ of energy.	calorimeter. The temperature of the 1502 g of water surrounding the bomb rises from 22.64°C
How much energy is produced when 3 mol of methane is burned?	to 29.30°C. The heat capacity of the hardware component of the calorimeter (everything that is not water) is 4042 J/°C. What is ΔU for the combustion of n -C ₆ H ₁₄ ? One mole of
○ 803 kJ	n-C ₆ H ₁₄ is 86.1 g. The specific heat of water is 4.184 J/g°C.
○ 268 kJ	-9.96 x 10 ³ kJ/mol
1606 kJ	-5.92 x 10 ³ kJ/mol
2409 kJ	-4.52 x 10 ³ kJ/mol
	-1.15 x 10 ⁴ kJ/mol
16 1 point	
Consider the following chemical equation: $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$ $\Delta H = -2220 \text{ kJ/mol rxn}$	21 1 point
How much thermal energy is given off when 11.0 g of propane gas (C_3H_8) is burned at constant	When 0.485 g of compound X is burned completely in a bomb calorimeter containing 3000 g of
pressure?	water, a temperature rise of 0.285°C is observed. What is ΔU of the reaction for the combustio of compound X? The hardware component of the calorimeter has a heat capacity of 3.81 kJ/°C.
O 26.0 kJ	The specific heat of water is 4.184 J/g °C, and the MW of X is 56.0 g/mol .
O 2220 kJ	-4660 kJ/mol
○ 555 kJ	○ 4660 kJ/mol
○ 1670 kJ	538 kJ/mol
	-538 kJ/mol

Nitric acid can be manufactured in a multi-step process, during which nitric oxide is oxidized to create nitrogen dioxide. $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ Calculate the standard reaction enthalpy for the above reaction using the following thermodynamic data.	26 1 point $ \label{eq:250} \text{Calculate the enthalpy change for the following chemical equation.} $ $ 2\text{SO}_2(g) + \text{O}_2(g) \rightarrow 2\text{SO}_3(g) $ Use the following thermochemical data to solve for the change in enthalpy.}
$N_2(g) + O_2(g) \rightarrow 2NO(g)$ $\Delta H^*_1 = 180.5 \text{ kJ/mol rxn}$ $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$ $\Delta H^*_2 = 66.4 \text{ kJ/mol rxn}$	ΔH_f for $SO_2(g)$ = -16.9 kJ/mol ΔH_f for $SO_3(g)$ = -21.9 kJ/mol
-246.9 kJ/mol rxn	
-252.4 kJ/mol rxn	○ -77.6 kJ/mol rxn ○ -5.0 kJ/mol rxn
-100.3 kJ/mol rxn	-10.0 kJ/mol rxn +5.0 kJ/mol rxn
-114.1 kJ/mol rxn	<u> </u>
23 1 point	To point
Calculate the standard reaction enthalpy for the following chemical equation.	F ₂ (g)
$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$ Use the following thermochemical equations to solve for the change in enthalpy.	C (s, graphite)
2H ₂ (g) + CO (g) \rightarrow CH ₃ OH (l) Δ H° = -128.3 kJ/mol	HCI (g)
$2CH_4(g) + O_2(g) \rightarrow 2CH_3OH(l)$ $\Delta H^\circ = -328.1 \text{ kJ/mol}$	Na (s)
$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ $\Delta H^\circ = -483.6 \text{ kJ/mol}$	HCl (aq)
	C (s, diamond)
+216 kJ/mol +155.5 kJ/mol	
+206.1 kJ/mol +42.0 kJ/mol	28 1 point
	Calculate the average S–F bond energy in SF $_6$ using the following ΔH_f values:
24 1 point	$SF_6(g) = -1209 \text{ kJ/mol}$
Calculate the standard enthalpy change for the following chemical equation.	S(g) = 279 kJ/mol
$2HCl(g) + F_2(g) \rightarrow 2HF(l) + Cl_2(g)$	F (g) = 79 kJ/mol
Use the following thermochemical equations to solve for the change in enthalpy.	289 kJ/mol bonds 582 kJ/mol bonds
4HCl (g) + O ₂ (g) \rightarrow 2H ₂ O (l) + 2Cl ₂ (g) Δ H° = -202.4 kJ/mol rxn	196 kJ/mol bonds 327 kJ/mol bonds
$^{-}$ $^{-}$	416 kJ/mol bonds
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ $\Delta H^\circ = -285.8 \text{ kJ/mol rxn}$	
17267 - 726267 - 7750 ()	1 point Using the bond energy data provided, calculate ΔH for the following reaction:
+1088.2 kJ/mol rxn +516.6 kJ/mol rxn	$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ Bond Energies
-1116.6 kJ/mol rxn +1015.4 kJ/mol rxn	H-H 436 kJ/mol
+1116.6 kJ/mol rxn -516.6 kJ/mol rxn	CI-CI 242 kJ/mol
-1587.2 kJ/mol rxn -1015.4 kJ/mol rxn	H-Cl 432 kJ/mol
-1088.2 kJ/mol rxn +1587.2 kJ/mol rxn	
_	186 kJ/mol -246 kJ/mol
25 1 point	○ 246 kJ/mol
Calculate the standard enthalpy change for the following chemical equation. $4\text{FeO (s)} + O_2(g) \rightarrow 2\text{Fe}_2O_3(s)$	
Use the following thermochemical equations to solve for the change in enthalpy.	30 1 point
Fe (s) + $\frac{1}{2}O_2(g) \rightarrow \text{FeO}(s)$ $\Delta H = -269 \text{ kJ/mol}$	The standard molar enthalpy of formation of NH ₃ (g) is -46.11 kJ/mol. What is the standard molar internal energy of formation of NH ₃ (g)?
2Fe (s) + 3/2 O ₂ (g) \rightarrow Fe ₂ O ₃ (s) \triangle H = -825 kJ/mol	-48.59 kJ/mol
2.3 (3) - 0/2 0/2(6) - 1 0/2 0/3 (3) 411 - 0/23 (3/110)	2433 kJ/mol
556 kJ/mol -2726 kJ/mol	-43.63 kJ/mol
○ 574 kJ/mol	-2525 kJ/mol
574 kJ/mol	