1	1 1 point	
	Which of the following combinations of hybridization and molecular geometry is possible	le?
	\circ sp ² , tetrahedral	
	sp ³ d, octahedral	
	\circ sp ² , linear	
	sp ³ , trigonal pyramidal	
2		
	The sp ³ hybridization has what percent s character and what percent p character respectively?	
	25%, 75%	
	75%, 25%	
	33%, 67%	
	50%, 50%	
3		
	What hybridization would you expect for Se when it is found in SeO_4^{2-} ?	
	\bigcirc sp ³ d ²	
	○ sp ³	
	\bigcirc sp ²	
	\bigcirc sp ³ d	
4	1 point Give the hybridization of each central atom in order from A to E:	
	Give the hybridization of each central atom in order from A to E.	
	D	
	A B C $/^{CH_3}$	
	$H_2C = C = C$	
	CH ₃	
	E	
	$\bigcirc sp^2, sp, sp^2, sp^2$	
5	1 point	
	What hybridization would you expect for C in ethyne (C_2H_2) ?	
	○ sp	
	\bigcirc sp ³	
	\bigcirc sp ²	
	○ sp ³ d	
6	1 point sp ² hybrid orbitals have	
	trigonal pyramidal symmetry.	
	trigonal planar symmetry.	
	linear symmetry.	
	tetrahedral symmetry.	
7		
	A sigma bond	
	always exists in conjunction with a pi bond.	
	is always polar.	
	stems from sp hybridization of orbitals.	
	is composed of non-bonding orbitals.	
	may exist alone or in conjunction with a pi bond.	
8	8 1 point	
Ö	In a new compound, it is found that the central carbon atom is sp ² hybridized. This impli	ies
	that	
	carbon has four lone pairs of electrons.	
	carbon has four sigma bonds.	
	carbon is also involved in a pi bond.	
	carbon has four regions of high electron density.	
	carbon has a tetrahedral electronic geometry.	
9		
	In the molecule, C_2H_4 , what are the atomic orbitals that participate in forming the sigma	ı

bond between the C and H atoms?

H: 1s, C: 2p

H: 2p, C: sp³

 $H: sp^2, C: sp^2$

H: 1s, C: sp

H: 1s, C: sp²