HW05 - Atomic Theory & Electron Configuration

1 point	7 1 point
A common reference point in atomic theory is the energy of a free electron. A "free"	In what region of light will the photons emitted in question 3 lie?
electron is one that is free of all positive/negative attractions and repulsions. It is effectively an infinite distance away from all things. What is the value of this reference	visible, red
energy level of a free electron?	Ultraviolet
O -∞ J	visible, blue
O (zero) J	visible, yellow
O +∞ J	O
O 6.022×10 ²³ J	8 1 point
	The graph below shows the radial distribution plots for the 1s wavefunctions for H and
1 point	He ⁺ . Which plot (A or B) is the 1s wavefunction for the He ⁺ ion?
Consider attractive forces within matter between particles (any particles really). As those attractions get stronger and stronger and the matter responds, the energy level of that matter	10 - A
O stay approximately the same	3
O will decrease accordingly	41 4 42 5 (C) 4 4 4 4 4 4 4 5 (C) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
will increase accordingly	4 B
	2
1 point Which of the following experiments provided evidence that the electrons in atoms are	0 2 4 6 8 10 12
arranged in distinct energy levels?	r (ag)
O the existence of elements with non-integer atomic weights	There is no way to know.
O the results of the Millikan oil-drop experiment	ОВ
O the scattering of alpha particles by a metal foil	O A
O the observation of line spectra from gas discharge tubes	
	9 1 point
1 point	What is the maximum number of electrons that can have the quantum number $n=2$ in
Assume n_1 and n_2 are two adjacent energy levels of an atom. The emission of radiation	an atom?
with the longest wavelength would occur for which two values of n_1 and n_2 ?	O 2
O 2,1	O 6
O 7,6	O 8
O 8,7	O 18
O 4,3	
	10 1 point
	The three quantum numbers for an electron in a hydrogen atom in a certain state are
1 point Part 1 of 2: Use the Rydberg formula for atomic hydrogen to calculate the wavelength of the	$n=4, \ \ell=2, \ m_{\ell}=1$. The electron is located in what type of orbital?
photon emitted in the transition of an electron from $n = 4$ to $n = 2$.	O 3d
O 94.9 nm	O 4p
O 205 nm	O 4d
O 486 nm	O 3p
8.63 nm	
<u> </u>	11 1 point
4	The number that describes the main energy level of an electron in an atom is
1 point Part 2 of 2: What is the name given to the spectroscope series to which the transition	$igcirc$ the angular momentum quantum number, ℓ
described in the previous question?	O the magnetic quantum number, m_{ℓ}
O Brackett series	the atomic number, z
O Lyman series	the principal quantum number, <i>n</i>
O Balmer series	une principal quantum number, n
O Paschen series	

Can an electron in an atom be in an energy level described by the set of quantum numbers $n=5,\ \ell=3,\ m_\ell=-2$? O yes O no, because m_ℓ must equal ± 1 O no, because ℓ must equal $\ell=1$ no, because $\ell=1$ no, because $\ell=1$ no, because $\ell=1$ no, because $\ell=1$	Which of the following is the valence electronic structure for a halogen? O $ns^2 np^{10}$ O $ns^2 np^5$ O $ns^2 np^6$ O ns^2
13 1 point An electron in a 3d orbital could have which of the following quantum numbers? O $n=3, \ell=1, m_\ell=-1$ O $n=3, \ell=2, m_\ell=0$ O $n=3, \ell=3, m_\ell=1$ O $n=3, \ell=2, m_\ell=-3$	19 1 point In the Aufbau order of occupancy of electronic energy levels, the level occupied just after 5p is
14 1 point How many p electrons does Se (atomic number 34) possess? 34 16 4 18	1 point The electron configuration for the Mn atom is O 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷ O 1s ² 2s ² 2p ⁶ 3s ² 3p ³ O 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵ O 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁵
15 1 point For which H-atom wavefunction are you most likely to find the electron farthest from the nucleus? O 2p O 4p O 3p O 2s	The ground state electron configuration of a neutral silver atom is [Kr] 5s ¹ 4d ¹⁰ instead of [Kr] 5s ² 4d ⁹ . This observation can be explained (theoretically) by the fact that only one electron can occupy a 5s orbital. the magnetism measurement shows one unpaired electron. an enhanced stability is associated with filled sets of equivalent orbitals. the 4d subenergy level has higher energy than the 5s subenergy level.
1 point The transition metals are elements with partially filled s subshells. d subshells. f subshells. p subshells.	1 point Which of the following atoms has the largest radius? CI F Br N
17	

1 point As an atom's radius decreases its ionization energy will either increase or decrease depending on whether you are going up a column or across a row. its ionization energy decreases. its ionization energy does not change. its ionization energy increases.	1 point How many subshells are there in the shell with $n = 3$? $\begin{array}{c} 4 \\ \hline \\ 3 \\ \hline \\ \end{array}$ $\begin{array}{c} 2 \\ \hline \\ \end{array}$ $\begin{array}{c} 1 \\ \end{array}$
1 point Which of the following would be expected to have the highest first ionization energy? Xe Ar Si Na CI	The diameter of the electron density of an atom is roughly 10 - 50 nm 1 - 5 nm 0.1 - 0.5 nm None of these.
1 point How many s electrons does P (atomic number 15) possess? 5 2 4 6	To which of the following elements would the size of the neutral atom (atomic radius) be the largest? Rb Ca Sr Na
1 point How many values of the quantum number ℓ are possible when n=5? 7 5 6 4	1 point Write an equation that represents the second ionization energy of nickel. O $Ni(g) \longrightarrow Ni^{2+}(g) + 2e^{-}$ O $Ni(g) \longrightarrow Ni^{+}(g) + e^{-}$ O $Ni(g) \longrightarrow Ni^{2+}(g) + e^{-}$ O $Ni^{+}(g) \longrightarrow Ni^{2+}(g) + e^{-}$
How many values of m_ℓ are allowed for an electron in a 5f subshell ? $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
1 point How many values of m_ℓ are allowed for an electron in a 2s subshell? 0 4 1 1	

O None of these.