1	7 points

Select all seven strong acids below:

HF
HCI
HI
HBr
H ₂ SO ₄
HAt
HCIO ₄
HNO ₃
NaOH
HCIO

HCIO₃

2 5 points

What is the pH of a 0.044 M HI solution? Note: Report your answer to two sig figs (pH = X.XX)

Type your answer...

3

5 points

What is the [OH] when 0.0023 moles of Ca(OH)₂ are placed in 654 mL water? Assume complete dissociation of $Ca(OH)_2$.

Ο	0.0035	Μ

- \bigcirc .0070 M
- \bigcirc 2.15 M
- 3.5 x 10⁻⁶ M
- \bigcirc 12.0 M

4 5 points

Use the data <u>here</u> to rank the following weak acids from **weakest** to **strongest**.

HIO CH₃COOH **HCN** HF HNO_2

- Ο $HIO < HCN < CH_3COOH < HNO_2 < HF$
- \bigcirc HCN< HIO < CH_3COOH < HNO_2 < HF
- \bigcirc $HNO_2 < HF < HIO < HCN < CH_3COOH$
- \bigcirc $HF < HNO_2 < CH_3COOH < HCN < HIO$

5 points 5

A 0.5 M sample of a weak acid, HA_1 , has a pH = 4.24. A 0.5 M sample of another weak acid, HA₂, has a pH = 5.66. Which weak acid has the larger K_a value?

() HA_2

- \bigcirc HA_1
- ()Both will have the same value of K_a

5 points 6

The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration. What is the pH?

Note: Report your answer to two sig figs (pH = X.XX)

Type your answer...

7 2 points

Which of the following represents a generic neutralization reaction of a strong acid and strong base?

- ()Acid + Base \rightarrow Salt + Water
- \bigcirc Acid + Base → Weak Base + Water
- Ο Acid + Base→ Weak Acid + Water
- \bigcirc Acid + Base \rightarrow Acid + Water
- ()Acid + Water \rightarrow Base + Salt
- \bigcirc Base + Water \rightarrow Acid + Salt

5 points 8

Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCl) and sodium hydroxide (NaOH) from HW 01.

> $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) +$ $H_2O(\ell)$

How many mL of 0.0448 M NaOH are needed to neutralize 32.0 mL of 0.0291 M HCl ?

-

- \bigcirc 20.8 mL
- \bigcirc 24.8 mL
- \bigcirc 33.7 mL
- \bigcirc 27.1 mL
- \bigcirc 49.3 mL

9 5 points

A titration experiment is set up to fully neutralize a strong acid (HCI) using a strong base (NaOH). The HCl has a concentration of 0.01 M and a volume of 100 mL. The NaOH also has a concentration of 0.01 M. What volume of NaOH is needed to fully neutralize the HCI?

- \bigcirc 50 mL
- \bigcirc 200 mL
- \bigcirc 100 mL
- \bigcirc 250 mL
- \bigcirc 20 mL
- \bigcirc 500 mL

10 5 points

Barium hydroxide is a strong base that dissociates based on the following reaction: $Ba(OH)_2(aq) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$

What volume of 0.005 M HCI (strong acid) is needed to fully neutralize a 500 mL 0.005 M Ba(OH)₂ solution?

 \bigcirc 1.00 L

 \bigcirc 500 mL

- \bigcirc 1.00 mL
- \bigcirc 750 mL
- \bigcirc 250 mL
- \bigcirc 2.50 L

11 2 points

What is the pH at the equivalence point of a titration involving a strong acid titrant and strong base analyte?

- \bigcirc pH = 7pH < 7 ()
- \bigcirc pH > 7

12 2 points

What is the pH at the equivalence point of a titration involving a strong acid titrant and a weak base analyte?

pH = 7() \bigcirc pH < 7 \bigcirc pH > 7

2 points 13

What is the pH at the equivalence point of a titration involving a strong base titrant and a weak acid analyte?

 \bigcirc pH > 7 pH = 7 \bigcirc \bigcirc pH < 7

14 5 points

A titration is performed to determine the concentration of a HCIO weak acid solution. It takes 12.84 mL 0.1205 M LiOH to neutralize 56.84 mL HCIO. What is the concentration (in M) of the original HCIO solution? Report your answer to 4 decimal places.

Type your answer...

5 points 15

Neutralizing an olympic size swimming pool is conceptually very similar to performaing a massive titration experiment. Suppose a 700 thousand gallon swimming pool has a pH = 9.33 which is a bit too high for swimming. Calculate how many gallons of 10 M HCl (strong acid) it will take to neutralize the swimming pool to pH = 7. Report your answer to exactly 2 significant figures.

Type your answer...

5 points 16

What atmospheric component is responsible for the natural acidity of rain?

- \bigcirc Carbon dioxide
- \bigcirc Sulfuric acid
- Ozone
- \bigcirc Oxygen

17 5 points

Which two methods can be used to make sea water drinkable?

distillation

		osmosis
		reverse osmosis
		flocculation
18	5 p	pints
	The	oH of rain water falling through an unpolluted atmosphere is closest to
	Ο	4.8
	Ο	5.4
	Ο	7.0
	0	8.7
	_	
19		pints
19		aquatic life in lakes cannot survive in water with a pH less than
19		t aquatic life in lakes cannot survive in water with a pH less than 5
19		aquatic life in lakes cannot survive in water with a pH less than
19		t aquatic life in lakes cannot survive in water with a pH less than 5
19		t aquatic life in lakes cannot survive in water with a pH less than 5 7
19		t aquatic life in lakes cannot survive in water with a pH less than 5 7 8
19 20	Most O O O	aquatic life in lakes cannot survive in water with a pH less than 5 7 8 14
_	Most O O O 5 pc The a	aquatic life in lakes cannot survive in water with a pH less than 5 7 8 14
_	Most O O O 5 pc The a	aquatic life in lakes cannot survive in water with a pH less than 5 7 8 14

- HNO₃
- NaOH
- Ο H_3O^+

21 5 points

It takes 13.7 mL 1.50 M NaOH to neutralize a 150 mL weak acid solution. How many moles of weak acid were in the original weak acid solution?

- 0.137 moles ()
- \bigcirc 109 moles
- \bigcirc 1.37 moles
- \bigcirc 0.225 moles
- 3.08 moles
- \bigcirc 0.0206 moles

22 5 points

When Lake Travis is full, it holds about 369 billion gallons. If we pretend that Lake Travis has a neutral pH (pH = 7), approximately how many moles of H^+ are present in the lake? 1 gal = 3.785 L

- Ο 1.40×10^5 moles
- Ο 3.69 x 10⁴ moles
- Ο 3.69 x 10⁹ moles
- Ο 1.39×10^8 moles
- Ο 138 moles
- Ο 4.65 x 10⁸ moles
- Ο 1.00×10^{-7} moles