## HW08－Enthalpy \＆Fossil Fuels

You might need to grab some data fromere for the bond energy problems．
Stuck on bomb calorimeters？Here＇s a video：Thermodynamics－Calorimetry Pt II－Bomb Calorimeter Example
Still feel like you aren＇t fully there with the conceptual part of calorimetry？Here＇s a video：Thermodynamics－Calorimetry－Part I

## 1

A 1.00 g sample of n －hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ undergoes complete combustion with excess $\mathrm{O}_{2}$ in a bomb calorimeter．The temperature of the 1815 g of water surrounding the bomb rises from $26.15^{\circ} \mathrm{C}$ to $29.97^{\circ} \mathrm{C}$ ．The heat capacity of the hardware component of the calorimeter（everything that is not water）is $5068 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ ．What is thechange in energyfor the combustion of $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$ ？One mole of $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$ is 86.1 g ．The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ ．
○ $-6.33 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$
O $-4.40 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
O $-4.16 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
O $-5.25 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$

## 2

Fill in the blanks to receive credit for each part of this question．
An unknown fuel distilled in a refinery（molar mass $64.0 \mathrm{~g} / \mathrm{mol}$ ）is combusted in a bomb calorimeter holding 991 mL water．When 0.182 grams of the fuel source is combusted in the bomb calorimeter，the temperature of the surroundings raises from $25.0^{\circ} \mathrm{C}$ to $27.2^{\circ} \mathrm{C}$ ． The heat capacity for the hardware component is $2.260 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ ．The heat capacity of water is $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ ．

In a bomb calorimeter，the thermometer is in the $\square$ ．
The combustion of the fuel that we are measuring here is

$\mathrm{kJ} / \mathrm{g}$ ．The enthalpy per mole of this reaction islosest to


3
Calculate the change in enthalpy of the following reaction in $\mathrm{kJ} / \mathrm{mol}$ using bond energy data：

$$
\mathrm{ClF}+\mathrm{CO} \rightarrow \mathrm{COClF}
$$

$\square$

4
Using the bond energy data provided，calculate $\Delta \mathrm{H}$ for the following reaction：
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}$（g）$\rightarrow 2 \mathrm{HCl}$（g）

| Bond | Bond Energy（kJ／mol） |
| :---: | :---: |
| $\mathrm{H}-\mathrm{H}$ | 436 |
| $\mathrm{Cl}-\mathrm{Cl}$ | 242 |
| $\mathrm{H}-\mathrm{Cl}$ | 432 |

〇 $186 \mathrm{~kJ} / \mathrm{mol}$
○ $-186 \mathrm{~kJ} / \mathrm{mol}$
○ $-246 \mathrm{~kJ} / \mathrm{mol}$
〇 $246 \mathrm{~kJ} / \mathrm{mol}$

5
Estimate the change in enthalpy of the following reaction using bond energy data：
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
○ $850 \mathrm{~kJ} / \mathrm{mol}$
○ $1241 \mathrm{~kJ} / \mathrm{mol}$
○ $-183 \mathrm{~kJ} / \mathrm{mol}$
○ $-1469 \mathrm{~kJ} / \mathrm{mol}$

6
What is the value of heat flow for the combustion of hydrogen in $\mathrm{kJ} / \mathrm{g}$ ？$\Delta H^{\circ}$ for this process is $-286 \mathrm{~kJ} / \mathrm{mol}$ ．
○ $-572 \mathrm{~kJ} / \mathrm{g}$
O $572 \mathrm{~kJ} / \mathrm{g}$
O $-71.5 \mathrm{~kJ} / \mathrm{g}$
○ $-286 \mathrm{~kJ} / \mathrm{g}$
○ $-143 \mathrm{~kJ} / \mathrm{g}$

7
This is a question that requires you to be completely precise and accurate．The numeric answer to this is exact based on the numbers that you have to use．So the answer is a large integer（ 4 digits to be exact）and I need you to be EXACTLY right on this．If you follow the steps that I showed in class on 11－16－2021，you should be able to do this easily．
QUESTION：What is the heat of combustion（it is a positive value because it is the heat given off－or released from the combustion）of exactly one mole of heptane？You answer has to be exactly right and in kJ．
$\square$

8
Which of the following is the most efficient fuel based on its combustion enthalpy per gram？
$\bigcirc$ wood
$\bigcirc$ coal
$\bigcirc$ octane
O methane
$\bigcirc$ hydrogen

9
What is the more efficient method to break a high molar mass fraction from a crude oil refinery down to a specific fuel？
O reforming
O thermal cracking
〇 fractional distillation
〇 catalytic cracking

10
An octane isomer can be made into a more efficient fuel by adding branching through the process of．．．
O catalytic cracking
O catalytic reforming
thermal cracking
〇 fractional distillation

11
If you want to calculate the heat flow involving a temperature change，which equation will you use？
○ $q=m c_{s} \Delta T$
○ $q=m \Delta H$
○ $q=m C$
O $\Sigma n$ bonds breaking $-\sum n$ bonds forming
○ $q=2\left(m-C_{s} \Delta T\right)$

12
If you want to calculate the heat flow involving a phase change, which equation will you use?

〇 $q=m \Delta H_{\text {trans }}$
() $q=m C$

○ $q=2\left(m-C_{s} \Delta T\right)$

- $q=m C_{s} \Delta T$

〇 $\Sigma n$ bonds breaking $-\Sigma n$ bonds forming

13
Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization:
$\square$ Fusion: $\square$ Sublimation: $\square$ Freezing:
$\square$

14
What is the heat required to completely melt a 11.33 g sample of silicon ( Si , molar mass $=$ $28.09 \mathrm{~g} / \mathrm{mol}$ ) solid that is already at its melting point? $\Delta H_{\text {fus }}=50.2 \mathrm{~kJ} / \mathrm{mol}$. Answer in units of kJ and round toone decimal place.

15
(Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from -18.0 ${ }^{\circ} \mathrm{C}$ to $84^{\circ} \mathrm{C}$ and use it to answer the next four questions.
What is the heat required to heat the ice to $0{ }^{\circ} \mathrm{C}$ ? Answer in joules to the nearest whole number.

16
(Part 2 of 4) What is the heat required to fully melt the ice at $0^{\circ} \mathrm{C}$ ? Answer in joules to the nearest whole number.

17
(Part 3 of 4) What is the heat required to heat the water from $0^{\circ} \mathrm{C}$ to $84^{\circ} \mathrm{C}$ ? Answer in joules to the nearest whole number.

18
(Part 4 of 4) What is the total heat applied during this process? Answer in kilojoules (!) to three significant figures.

19
The specific heat for liquid argon and gaseous argon is $25.0 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$ and $20.8 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$, respectively. The enthalpy of vaporization of argon is $6506 \mathrm{~J} / \mathrm{mol}$. How much energy is required to convert 1 mole of liquid $\operatorname{Ar}$ from $5^{\circ} \mathrm{C}$ below its boiling point to 1 mole of gaseous Ar at $5^{\circ} \mathrm{C}$ above its boiling point?
○ 6631 J
○ 6735 J
○ 6610J
○ 229 J
○ 125 J

