HW08 - Enthalpy & Fossil Fuels

You might need to grab some data from<u>here</u> for the bond energy problems. Stuck on bomb calorimeters? Here's a video:<u>Thermodynamics - Calorimetry Pt II - Bomb</u> <u>Calorimeter Example</u>

Still feel like you aren't fully there with the conceptual part of calorimetry? Here's a video: <u>Thermodynamics - Calorimetry - Part I</u>

1

A 1.00 g sample of n-hexane (C₆H₁₄) undergoes complete combustion with excess O₂ in a bomb calorimeter. The temperature of the 1815 g of water surrounding the bomb rises from 26.15°C to 29.97°C. The heat capacity of the hardware component of the calorimeter (everything that is not water) is 5068 J/°C. What is thæhange in energyfor the combustion of n-C₆H₁₄? One mole of n-C₆H₁₄ is 86.1 g. The specific heat of water is 4.184 J/g.°C.

- O -6.33 x 10⁴ kJ/mol
- O -4.40 x 10³ kJ/mol
- O -4.16 x 10³ kJ/mol
- O -5.25 x 10³ kJ/mol

2 5

Fill in the blanks to receive credit for each part of this question.

An unknown fuel distilled in a refinery (molar mass 64.0 g/mol) is combusted in a bomb calorimeter holding 991 mL water. When 0.182 grams of the fuel source is combusted in the bomb calorimeter, the temperature of the surroundings raises from 25.0 °C to 27.2 °C. The heat capacity for the hardware component is 2.260 kJ/ °C. The heat capacity of water is 4.184 J/ g °C.

The combust	ion of the fuel that we are measuring here is
	. The enthalpy of this reaction is equal to
	kJ. The enthalpy per gram of this reaction is abou
l/a The ent	halpy per mole of this reaction isclosest to
J/g. The end	
	k1/mol
	kJ/mol.
# system	kJ/mol.
ii system	iii surroundings
	iii surroundings

3

Calculate the change in enthalpy of the following reaction in kJ/mol using bond energy data:

CIF + CO → COCIF

4 6 poin

Using the bond energy data provided, calculate Δ H for the following reaction: H₂(g) + Cl₂(g) \rightarrow 2HCl (g)

_ r	12(g)	$+ Cl_2(g) \rightarrow ZHCl(g)$
	Bond	Bond Energy (kJ/mol)
	H-H	436
	CI-CI	242
	H-CI	432

- O 186 kJ/mol
- O -186 kJ/mol
- O -246 kJ/mol
- O 246 kJ/mol

5 6 points

Estimate the change in enthalpy of the following reaction using bond energy data: $N_2H_4(g) + H_2(g) \rightarrow 2NH_3(g)$

- O 850 kJ/mol
- O 1241 kJ/mol
- O -183 kJ/mol
- O -1469 kJ/mol

6	

What is the value of heat flow for the combustion of hydrogen in kJ/g ? ΔH^* for this process is -286 kJ/mol.

- -572 kJ/g
 572 kJ/g
- O -71.5 kJ/g
- O -286 kJ/g
- O -143 kJ/g

7 5 point

This is a question that requires you to be completely precise and accurate. The numeric answer to this is exact based on the numbers that you have to use. So the answer is a large integer (4 digits to be exact) and I need you to be EXACTLY right on this. If you follow the steps that I showed in class on 11-16-2021, you should be able to do this easily. QUESTION: What is the heat of combustion (it is a positive value because it is the heat given off - or released from the combustion) of exactly one mole of heptane? You answer has to be exactly right and in kJ.

8 6 points

Which of the following is the most efficient fuel based on its combustion enthalpy per gram?

- O wood
- O coal
- O octane
- O methane
- O hydrogen

9 6 p

What is the more efficient method to break a high molar mass fraction from a crude oil refinery down to a specific fuel?

- O reforming
- O thermal cracking
- O fractional distillation
- O catalytic cracking

10 6 pc

An octane isomer can be made into a more efficient fuel by adding branching through the process of...

- O catalytic cracking
- O catalytic reforming
- O thermal cracking
- O fractional distillation

11 4 poin

If you want to calculate the heat flow involving a temperature change, which equation will you use?

- $\bigcirc q = mC_s \Delta T$
- $\bigcirc q = m\Delta H$
- $\bigcirc q = mC$
- O Σn bonds breaking -Σn bonds forming
- $\bigcirc q = 2(m C_s \Delta T)$

4 pc	
If you use?	u want to calculate the heat flow involving a phase change, which equation will you
O use:	$q = m\Delta H_{trans}$
$\tilde{\circ}$	q = mC
$\hat{\mathbf{O}}$	$q = 2(m - \zeta \Delta T)$
$\overline{0}$	$q = mC_{\alpha}\Delta T$
0	-
0	Σn bonds breaking -Σn bonds forming
4 pc	oiste
	oints
	esignate the sign of the heat flow (+ or -) for each of the following physical changes: aporization:
	Fusion: Freezing:
	Sublimation:
	oints
	at is the heat required to completely melt a 11.33 g sample of silicon (Si, molar mass = 19 g/mol) solid that is already at its melting point? ΔH_{fus} = 50.2 kJ/mol. Answer in unit:
	and round to <u>one decimal place</u> .
	oints t 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from -18.0
°C to	o 84 °C and use it to answer the next four questions.
What numl	at is the heat required to heat the ice to 0 °C? Answer in joules to the nearest whole ber.
5 po	
	t 2 of 4) What is the heat required to fully melt the ice at 0 °C? Answer in joules to the rest whole number.
	ioints
	t 3 of 4) What is the heat required to heat the water from 0 °C to 84 °C? Answer in es to the nearest whole number.
,	
_	
5 pc	
	t 4 of 4) What is the total heat applied during this process? Answer in kilojoules (!) to e significant figures.
uree	כ אקוווועמות ווצעוד.
5 pc	
	specific heat for liquid argon and gaseous argon is 25.0 J/mol.°C and 20.8 J/mol.°C,
requi	ectively. The enthalpy of vaporization of argon is 6506 J/mol. How much energy is irred to convert 1 mole of liquid Ar from 5 °C below its boiling point to 1 mole of
gased	ous Ar at 5 °C above its boiling point?
0	6631 J
Ο	6735 J
0	6610 J

- O 229 J
- O 125 J