1 4 points

Which of the following statements concerning the first law of thermodynamics is/are true? Select all of the correct answers.

Internal energy lost by a system is always gained by the surroundings.

The universe is an isolated system.

2 4 points

Which of the following best describes an endothermic reaction?

- O Heat flows into the system, and the surroundings feel colder
- O Heat flows out of the system, and the surroundings feel warmer
- O Heat flows into the system, and the surroundings feel warmer
- O Heat flows out of the system, and the surroundings feel colder

3 3 points

You take an ice cube out of the freezer, let it melt, and then you boil it. Select all true statements.

	If the boiled wate	r condenses, it will be	an endothermic process
--	--------------------	-------------------------	------------------------

- The act of boiling was endothermic
- If the boiled water condenses, it will be an exothermic process.
- The act of melting was endothermic
- The act of boiling was exothermic.

4 2 points

A system releases heat. What is...

- 1. the sign of heat flow with respect to the system?
- 2. the sign of the temperature change of the surroundings?

Ο	+, -
0	-, +
0	-, -
-	

O +, +

5 5 points

Consider the following descriptions. Choose all that are exothermic.

I. A combustion reaction releases 12.5 kJ of heat

II. You are standing in the surroundings of a chemical reaction and you feel it get colder

III. You are standing in the surroundings of a chemical reaction and you feel it get warmer

IV. A metal bar is heated from 25 $^{\circ}$ C to 36 $^{\circ}$ C

- II and IV
- ◯ I, III, and IV
- 🔵 🛛 I and III

Fire i	not hot hot
7 5 pe If the react O	oints e products of a reaction have higher heat content than the reactants, then the tion is exothermic. is endothermic.
8 5 pe How °C? Note: O O O	much heat (in kJ) is required to raise 2.4 cups of water at room temperature to 66 Look up any data necessary for this problem online. 4.2 kJ 6.6 kJ 97 kJ 160 kJ 40.1 kJ

126 g
10.9 g
16.8 g
29.7 g

10 4 points

When 217 J heat is added to a 4.12 g sample at 21 °C, the temperature of the substance shoots to 35 °C. What is the specific heat capacity of this substance? Answer in J/g °C and round your final answer to two decimal places.

Type your answer...

11 5 points

A piece of metal with a mass of 54.9 g at 97.3 °C is placed in a calorimeter containing 75.6 g of water at 22.8 °C. The final temperature of the mixture is 28.5 °C. What is the specific heat capacity of the metal? Assume that there is no energy lost to the surroundings.

- O 0.248 J/g ℃
- O 0.712 J/g ℃
- 0.401 J/g °C
- O 0.477 J/g ℃
- O 0.389 J/g ℃

12 4 points

Consider the following balanced chemical equation:

The enthalpy of combustion for this balanced equation (the heat *released*) is equal to 905 kJ per reaction. How much heat is released when 16.0 moles of NH_3 react with 21.0 moles of O_2 ?

- O 14500 kJ
- O 905 kJ
- O 3620 kJ
- O 19005 kJ
- O 226 kJ
- O 302 kJ
- O 2715 kJ

13 5 points

Carbon monoxide reacts with oxygen to form carbon dioxide by the following reaction: $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$

 Δ H for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon monoxide reacted with 12.0 moles oxygen to produce carbon dioxide?

- 412 kcal
 1620 kcal
 135 kcal
- O 812 kcal

14 5 points

Burning 1 mol of methane in oxygen to form $CO_2(g)$ and $H_2O(g)$ produces 803 kJ of energy. How much energy is produced when 3 mol of methane is burned?

- O 2409 kJ
- 0 803 kJ
- 268 kJ
- 🔘 1606 kJ

15 4 points

The specific heat capacity is...

- O the heat required to raise one mole of substance one degree Celsius
- O the heat required to raise the temperature of any sample of a substance one degree Celsius
- O the temperature required to add 1 J to one gram of substance
- O the heat required to to raise one gram of a substance one degree Celsius

16 5 points

1000 J is added to a variety of substances (each with the same mass). In the end, the hottest substance (the one with the highest temperature) will be...

- they should all be the same temperature.
- O the one with the highest specific heat capacity.
- O the one with the lowest specific heat capacity.

17 5 points

Consider the following data for two experimental fuels:

Name of Experimental Fuel	Molar Mass (g/mol)	Enthalpy of Combustion (kJ/mol)
Hyper Fuel	28.4	1364
Uber Fuel	66.1	1582

Convert the enthalpy of combustion to kJ/g to compare the fuel efficiency for both fuels. Which fuel releases more energy per unit mass?

- O Hyper fuel by a factor of 2x
- O Uber fuel by a factor of 2.7x
- O Uber fuel by a factor of 2x
- O Hyper fuel by a factor of 2.7x
- O Hyper fuel by a factor of 1.2x
- O Uber fuel by a factor of 1.2x

18 5 points

A 30.0 g sample of CsOH (a strong base) is dissolved into 450 mL of 25 °C water in a coffee-cup calorimeter. The temperature climbs to 32.6 °C after all the base dissolves. Answer the following three questions about this experiment (part 1 of 3) is the dissolution process for CsOH exothermic or endothermic?

(part 1 of 3) Is the dissolution process for CsOH exothermic or endothermic?

-) exothermic
- O endothermic

19 5 points

(part 2 of 3) Which of the following equations best represents the value of q for the calorimeter?

- $O \quad q_{cal} = C_{s,water} \Delta T_{water}$
- $O \quad q_{cal} = m_{CsOH} \cdot C_{s,CsOH} \cdot \Delta T_{water}$
- $O \quad q_{cal} = m_{water} \cdot C_{s,water} \cdot \Delta T_{water}$
- $O \quad q_{cal} = m_{CsOH} \cdot C_{s,water} \cdot \Delta T_{salt}$

20 5 points

(part 3 of 3) What is the value for ΔH for the CsOH dissolving? Answer in kJ/g to 3 significant figures.

Type your answer...

21 5 points

When a certain amount of compound X is burned completely in a bomb calorimeter containing 3000 g of water, a temperature rise of 0.697 °C is observed. What is ΔH for the burning of the fuel?

Answer in kJ to 3 significant figures and get the sign right

The hardware component of the calorimeter has a heat capacity of 3.81 kJ/°C. The specific heat of water is 4.184 J/g·°C.

Type your answer...

22 8 points

A piping hot block of lead ($C_s = .160 \text{ J/g}$ °C) is placed in a coffee cup calorimeter containing 350 g water ($C_s = 4.184 \text{ J/g}$ °C). The lead cools from 99.0 °C to 24.0 °C, while the water in the calorimeter heats from 22.5 °C to 24.0 °C.

If we consider the lead to be our system, it can be concluded that this process

choose your answer... \checkmark . The mass of lead is about

g.

choose your answer... \checkmark