14 points
Which of the following statements concerning the first law of thermodynamics is/are true? Select all of the correct answers.
\square Internal energy lost by a system is always gained by the surroundings.The universe is an isolated system.The internal energy of the universe is always increasing.

4 points
Which of the following best describes an endothermic reaction?
O Heat flows into the system, and the surroundings feel colder
O Heat flows out of the system, and the surroundings feel warmer
O Heat flows into the system, and the surroundings feel warmer
O Heat flows out of the system, and the surroundings feel colder

3 points
You take an ice cube out of the freezer, let it melt, and then you boil it. Select all true statements.

If the boiled water condenses, it will be an endothermic processThe act of boiling was endothermicIf the boiled water condenses, it will be an exothermic process.The act of melting was endothermicThe act of boiling was exothermic.

42 points
A system releases heat. What is...

1. the sign of heat flow with respect to the system?
2. the sign of the temperature change of the surroundings?

○,+-
○ -, +
○ - -
○ +,+

5 points

Consider the following descriptions. Choose all that are exothermic.
I. A combustion reaction releases 12.5 kJ of heat
II. You are standing in the surroundings of a chemical reaction and you feel it get colder
III. You are standing in the surroundings of a chemical reaction and you feel it get warmer
IV. A metal bar is heated from $25^{\circ} \mathrm{C}$ to $36^{\circ} \mathrm{C}$

O I and II
O II and IV
O I, III, and IV
O I and III
$6 \quad 2$ points
Fire is...
O nothot
\bigcirc hot

75 points
If the products of a reaction have higher heat content than the reactants, then the reaction...
\bigcirc is exothermic.
\bigcirc is endothermic.

85 points
How much heat (in kJ) is required to raise 2.4 cups of water at room temperature to 66 ${ }^{\circ} \mathrm{C}$?
Note: Look up any data necessary for this problem online.
○ 4.2 kJ
$\bigcirc 6.6 \mathrm{~kJ}$
○ 97 kJ
○ 160 kJ
○ 40.1 kJ

95 points
What mass of liquid ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ must be burned to supply 500 kJ of heat? The standard enthalpy of combustion of ethanol at 298 K is $-1368 \mathrm{~kJ} / \mathrm{mol}$.
○ 126 g
○ 10.9 g
○ 16.8 g
$\bigcirc \quad 29.7 \mathrm{~g}$

104 points
When 217 J heat is added to a 4.12 g sample at $21^{\circ} \mathrm{C}$, the temperature of the substance shoots to $35^{\circ} \mathrm{C}$. What is the specific heat capacity of this substance? Answer in $\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ and round your final answer totwo decimal places.

Type your answer...

115 points
A piece of metal with a mass of 54.9 g at $97.3^{\circ} \mathrm{C}$ is placed in a calorimeter containing 75.6 g of water at $22.8^{\circ} \mathrm{C}$. The final temperature of the mixture is $28.5^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal? Assume that there is no energy lost to the surroundings.
○ $0.248 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$0.712 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$0.401 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$0.477 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
○ $0.389 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

124 points
Consider the following balanced chemical equation:

$$
4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

The enthalpy of combustion for this balanced equation (the heat released) is equal to 905 kJ per reaction. How much heat is released when 16.0 moles of NH_{3} react with 21.0 moles of O_{2} ?

○ 14500 kJ
$\bigcirc 905 \mathrm{~kJ}$
○ 3620 kJ
○ 19005 kJ
○ 226 kJ
○ 302 kJ
○ 2715 kJ
$13 \quad 5$ points
Carbon monoxide reacts with oxygen to form carbon dioxide by the following reaction $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}$ for this reaction is -135.28 kcal ．How much heat would be released if 12.0 moles of carbon monoxide reacted with 12.0 moles oxygen to produce carbon dioxide？
〇 412 kcal
○ 1620 kcal
O 135 kcal
○ 812 kcal

145 points
Burning 1 mol of methane in oxygen to form $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ produces 803 kJ of energy．How much energy is produced when 3 mol of methane is burned？
〇 2409 kJ
○ 803 kJ
○ 268 kJ
○ 1606 kJ

154 points
The specific heat capacity is．．．
O the heat required to raise one mole of substance one degree Celsius
O the heat required to raise the temperature of any sample of a substance one degree Celsius

O the temperature required to add 1 J to one gram of substance
O the heat required to to raise one gram of a substance one degree Celsius

165 points
1000 J is added to a variety of substances（each with the same mass）．In the end，the hottest substance（the one with the highest temperature）will be．．．
O they should all be the same temperature．
O the one with the highest specific heat capacity．
O the one with the lowest specific heat capacity．

17
5 points
Consider the following data for two experimental fuels：

Name of Experimental Fuel	Molar Mass $(\mathrm{g} / \mathrm{mol})$	Enthalpy of Combustion $(\mathrm{kJ} / \mathrm{mol})$
Hyper Fuel	28.4	1364
Uber Fuel	66.1	1582

Convert the enthalpy of combustion to kJ / g to compare the fuel efficiency for both fuels， Which fuel releases more energy per unit mass？
O Hyper fuel by a factor of $2 x$
Ober fuel by a factor of 2.7 x
Ober fuel by a factor of $2 x$
Hyper fuel by a factor of 2.7 x
O Hyper fuel by a factor of $1.2 x$
O Uber fuel by a factor of $1.2 x$

185 points
A 30.0 g sample of CsOH （a strong base）is dissolved into 450 mL of $25^{\circ} \mathrm{C}$ water in a coffee－cup calorimeter．The temperature climbs to $32.6^{\circ} \mathrm{C}$ after all the base dissolves． Answer the following three questions about this experiment
（part 1 of 3）Is the dissolution process for CsOH exothermic or endothermic？
\bigcirc exothermic
O endothermic

195 points
（part 2 of 3）Which of the following equations best represents the value of q for the calorimeter？
〇 $q_{\text {cal }}=C_{\mathrm{s}, \text { water }} \Delta T_{\text {water }}$
〇 $q_{\text {cal }}=m_{\mathrm{CsOH}} \cdot C_{\mathrm{s}, \mathrm{CSOH}} \cdot \Delta T_{\text {water }}$
○ $q_{\text {cal }}=m_{\text {water }} \cdot C_{s, \text { water }} \cdot \Delta T_{\text {water }}$
〇 $a_{\text {cal }}=m_{\mathrm{CsOH}} \cdot C_{\text {s，water }} \cdot \Delta T_{\text {salt }}$

20
5 points
（part 3 of 3）What is the value for ΔH for the CsOH dissolving？ Answer in kJ / g to 3 significant figures．

Type your answer．．．

215 points
When a certain amount of compound X is burned completely in a bomb calorimeter containing 3000 g of water，a temperature rise of $0.697^{\circ} \mathrm{C}$ is observed．What is $\Delta \mathrm{H}$ for the burning of the fuel？
Answer in kJ to 3 significant figures and get the sign right
The hardware component of the calorimeter has a heat capacity of $3.81 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ ．The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ ．

Type your answer．．．

228 points
A piping hot block of lead（ $C_{s}=.160 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ ）is placed in a coffee cup calorimeter containing 350 g water（ $\mathrm{C}_{\mathrm{s}}=4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ ）．The lead cools from $99.0^{\circ} \mathrm{C}$ to $24.0^{\circ} \mathrm{C}$ ，while the water in the calorimeter heats from $22.5^{\circ} \mathrm{C}$ to $24.0^{\circ} \mathrm{C}$ ．

If we consider the lead to be our system，it can be concluded that this process
choose your answer．．．$\quad \vee$ ．The mass of lead is about
choose your answer．．．$\quad \vee \mathrm{g}$.

