5 points Which of the following has bond angles slightly LESS than 120°?

- ()NO₃⁻
- CH₂O ()
- \bigcirc SF_2
- ()O₃

5 points

Consider the compound peroxyacetylnitrate, an eye irritant in smog.

0_+_0 N/ 0-

Predict the indicated bond angle.

- Ο slightly less than 109.5°
- Ο 90°
- \bigcirc 109.5°
- \bigcirc slightly less than 120°
- \bigcirc 120°

5 points

What is the shape of phosphorus pentachloride? CIICI CI

- CI
- trigonal bipyramidal \bigcirc
- \bigcirc trigonal planar
- \bigcirc octahedral
- \bigcirc tetrahedral
- Ο trigonal planar

5 points

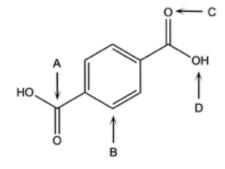
Referring to the phosphorus pentachloride molecule shown above, what is the bond angle between a chlorine in the axial position and a chlorine in the equatorial position? 180° () \bigcirc 360° \bigcirc 120° \bigcirc 109.5° ()45°

 \bigcirc 90°

5 points

Referring again to phosphorus pentachloride, what are the bond angles between the two axial chlorine atoms? 109.5° () \bigcirc 120°

90° \bigcirc 180°


5 points

What is the shape of sulfur hexachloride? CI

 \bigcirc octahedral

- \bigcirc tetrahedral
- Ο hexahedral
- Ο trigonal bipyramid
- \bigcirc trigonal planar
- 4 points

Which labelled bond angles are 120°?

С
В
А
D

5 points

One of the cool things you should be able to do now is look at a big molecule and make detailed conclusions about unique groups within that molecule, such as determining the shape, bond angles, and the number of implied lone pairs. Answer the following questions about this molecule shown below. Fun fact, this molecule is just a small component of the hormone, oxytocin. Oxytocin is secreted as a result of social bonding and promotes feelings of closeness to others.

The bond angle around the carbon labeled A is
The electronic geometry around the nitrogen labeled B is
The molecular geometry around the carbon labeled C is
The bond angle around the oxygen labeled D is
There are a total of lone pairs on this molecule.
Image: trigonal pyramidal Image: trigonal bipyramidal Image: tetrahedral
iii see-saw iii tetrahedral iii bent iii trigonal pyramidal

5 points

What is the geometry around the left-most carbon in the molecule CH₂CHCH₃?

- \bigcirc trigonal planar
- \bigcirc tetrahedral
- \bigcirc linear
- \bigcirc trigonal pyramidal

10 5 points

What is the shape (molecular geometry) of COCl₂?

- \bigcirc T-shaped
- \bigcirc trigonal pyramidal
- \bigcirc trigonal planar
- \bigcirc tetrahedral

11 5 points

What is the molecular geometry of the nitrite ion, NO_2^- ?

- \bigcirc trigonal pyramidal
- \bigcirc none of these
- \bigcirc linear
- \bigcirc trigonal planar
- ()bent

12 5 points

A mo	lecule has three bonds and one lone pair. What are the electronic and molecular
geom	etries, respectively?
Ο	trigonal pyramid, tetrahedral

- ()trigonal planar, trigonal pyramid
- \bigcirc tetrahedral, trigonal pyramid

()tetrahedral, tetrahedral

 \bigcirc tetrahedral, trigonal planar

5 points 13

Determine the molecular geometry of BrF₅.

This molecule exhibits "expanded valence," meaning it disobeys the octet rule that allows S = N - A to work. You can try it out on your own or search the internet for the structure before determining the shape.

- Ο Octahedral
- \bigcirc Trigonal pyramidal
- Ο Trigonal bipyramidal
- \bigcirc Square pyramidal

14 3 points

State the strongest intermolecular force possible for each compound, respectively:

 O_3 , NH_3 , C_6H_{14}

- Ο dipole-dipole, hydrogen bond, dipole-dipole,
- \bigcirc dispersion, dipole-dipole, dipole-dipole
- \bigcirc dispersion, dipole-dipole, hydrogen boond
- \bigcirc dipole-dipole, hydrogen bond, dispersion

15 3 points

Consider the following boiling point data:

- HBr, T_b = -66 °C
- HI, T_b = -35 °C

From this data, we can interpret that HI has stronger intermolecular forces. Which of the following best explains why HI has stronger IMFs than HBr?

- Ο The bond in HI are more polar than HBr
- Ο HI is trigonal planar
- Ο HI is more polarizable than HBr
- \bigcirc The bond in HBr are more polar than HI

16 2 points

Nucleotides, the molecules that make up DNA have average molecular weights around 400-500 g/mol. They contain polar functional groups and can hydrogen bond. However, the stability of DNA depends on dispersion forces. Why might this be?

- ()Large organic molecules can makestronger individual dispersion forces, which can be stronger than individual hydrogen bonds
- 400-500 g/mol is a small molar mass, which diminishes the strength of the dipole-dipole () and hydrogen bonds
- \bigcirc 400-500 g/mol is a small molar mass, which will result in closer interactions and stronger dispersion forces
- Large organic molecules can makemore dispersion forces, which can add up to being ()stronger than other intermolecular forces.

17 2 points

Draw the following two molecules: H_2S and SiH_4 . Which one will have the stronger intermolecular forces and why?

- H₂S is more polarizable Ο
- \bigcirc H_2S is more polar
- SiH_4 is more polar ()
- SiH_4 is more polarizable \bigcirc

18 5 points

About what percentage of Earth's dry (no water) atmosphere is able to absorb IR radiation?

- \bigcirc 1%
- \bigcirc Less than 1%
- \bigcirc IR is absorbed evenly by all atmospheric gases
- Ο Only gases in the mesosphere
- \bigcirc Roughly 50%

19 4 points

Select the molecules that are capable of absorbing IR radiation.

- CF₃CH₂CF₃
- Ar
- CH_4
- Ne
- H_2O

	CO ₂
	O ₂
20 2 p	oints
	t is the advantage of HFCs over the HCFCs that are used in present day appliances?
0	HFCs do not absorb in the IR region
Ô	HFCs are inflammable
\bigcirc	HFCs are less reactive than HCFCs
0	HFCs do not contain ozone-depleting chlorine
21 2 p	oints
Whi	ch of the following is a concern with long-term use of HFCs?
0	They are highly toxic
0	They are flammable
0	They will result in large-scale depletion of the ozone layer
0	They absorb IR radiation, resulting in global warming risks
	oints
	ch of the following contribute significantly to the hole in the ozone layer? All of these are correct
\bigcirc	
0	Chlorofluorocarbons
0	Deforestation
0	Automobile exhaust
23 2 p	oints
	ozone layer is found in the
0	Mesosphere
\bigcirc	Troposphere
\bigcirc	Stratosphere
\bigcirc	
0	Biosphere
24 2 p	oints
	are running a chemical reaction using a catalyst. Which of the following statements is true?
0	The catalyst will speed up your reaction.
0	You will need to constantly add more catalyst because the chemical reaction will always rapidly deplete the catalyst.
0	You should not use a catalyst because it will deplete your desired products.
0	The catalyst has no affect on the reaction mechanism.
	oints
	depletion of the ozone layer is catalyzed by chlorine. Which of the following best relates ospheric chlorine to ozone levels?
0	As chlorine levels increase, ozone levels increase
\bigcirc	As chlorine levels increase, the amount of ozone depletion cannot be predicted
\sim	As chlorine levels increase, ozone levels decrease
26 5 p	oints
ZO JP	C

Α Β : CI

Fill in each blank for the reaction shown above.

D

0:

The formal charge on the chlorine radical labeled A is equal to
• The formal charge on the oxygen labeled B is equal to
. The formal charge on the oxygen labeled C is equal to
. The formal charge on the oxygen labeled D is equal to
. This reaction is the first step of the
in the atmosphere.
#+1 # formation of chlorine gas # addition of chlorine to ozone
iii catalyzed decomposition of ozone iii formation of HCFCs