HW03 - Radiation & Atomic Theory

O Radio waves

1 2 points	7 4 points
As the wavelength of a light wave gets longer, frequency and energy	Which of the following pairs the correct definition of frequency along with the correct
remain unchanged	units shown in parenthesis?
	O The time it takes for a full wavelength to pass a single point (s ⁻¹)
O increase	The time it takes for a full wavelength to pass a single point (s)
O decrease	
2 4 points	The number of wavelengths that pass a single point per second (s)
$E = hv$ $c = \lambda v$	
	8 4 points
WWW.	What is the frequency of yellow light with a wavelength of 580 nm?
Radio Microwave Infra-Red Long Wavelength, Low Energy Low Frequency High Frequency	O $2.39 \times 10^{-19} \text{ s}^{-1}$
	O 5.17 × 10 ⁵ s ⁻¹
Increasing Energy (E), Frequency (\mathbf{v}) Shortening Wavelength (λ)	
Rank the following radiation types from shortest to longest wavelength:	$O = 5.17 \times 10^{14} \text{ s}^{-1}$
UV, X-Ray, Red light, Green light	O $1.80 \times 10^{-7} \text{s}^{-1}$
Red light, Green light, UV, X-Ray	
Green light, X-Ray, Red light, UV	9 4 points
X-Ray, Green light, Red light, UV	Which of the following equations directly solves for energy using wavelength?
X-ray, UV, Green light, Red light	\bigcap $E = h \mathcal{N}_V$
X Tay, OV, Green light, Ned light	
	$O = hc/\lambda$
3 4 points	$O E = h\nu/\lambda$
Which of the following statements is true regarding the visible spectrum:	\bigcirc $E = h\lambda$
I. Red light has the longest wavelength in the visible spectrum	
II. Yellow light has a greater velocity than orange light	
III. Violet light has the highest velocity in the visible spectrum IV. Blue light has a higher frequency than green light	10 4 points
O I only	FM radio stations correspond to the frequency of the channel in MHz. If you want to
, III, and IV only	listen to a radio station that has a frequency equal to 1.015×10^8 Hz, you should tune your radio to
	0 10.15
O IV only	O 101.5
O I, II, III, and IV	
O I and IV only	0 1.015
I, II, and IV only	O 1015
II, III, and IV only	
	11 4 points
	Microwaves, such as those used for radar and to heat food in a microwave oven, have
4 4 points	wavelengths just greater than about 3 mm. What is the corresponding frequency of radiation with a 13.4 mm wavelength?
How would you describe the most likely effect of visible light on a molecule?	
O molecular ionization	
O molecular vibration	O 2.24 x 10 ¹⁰ Hz
O molecular rotation	O $6.82 \times 10^{10} \text{Hz}$
O electron excitation	O 4.81 x 10 ¹⁰ Hz
5 4 points	
5 4 points How would you describe the most likely effect of infra-red radiation on matter?	12 4 points
ortation	It takes light with a wavelength of 212 nm to break the N-H bond in ammonia. What energy is required per photon to break this bond? What is the N-H bond strength in
	terms of kJ per mole?
O excitation	O 6.61 x 10 ⁻²² kJ/photon; 0.398 kJ/mol
O ionization	O 6.61 x 10 ⁻²² kJ/photon; 398 kJ/mol
O vibration	
	O 9.38 x 10 ⁻²² kJ/photon; 565 kJ/mol
6 4 points	O 9.38 x 10 ⁻²² kJ/photon; 565,000 kJ/mol
DNA, generally considered a very stable organic polymer, is first damaged at which	
region of the electromagnetic spectrum?	
O UV region	
O IR region	
○ Visible light	
O	

13 4 points	19 4 points
Which of the following is the most energetic form of UV light?	An electron is found in a 6f orbital. What is the value of the angular momentum quantur
O UV-A	number (ℓ)?
O UV-A, UV-B, and UV-C are equally energetic	O 2
O uv-c	O 1
O UV-B	O 4
	O 6
14 4 points	O 3
Sodium vapor lamps, used for public lighting, emit yellow light of a wavelength of 570 nm.	
How much energy is emitted by an excited sodium atom when it generates a photon?	20 4 points
O 2.8 x 10 ⁻¹⁹ J	How many unique quantum number sets are possible for a 3p electron in an argon atom
O 3.5 x 10 ⁻¹⁹ J	Type your answer
O 2.8 × 10 ⁻²⁰ J	,
O 3.5 x 10 ⁻²⁸ J	
O 3.5 x 10 J	21 2 points
	Which of the following is not a possible quantum number set?
15 4 points	$O = 2, \ell = 1, m_{\ell} = 0, m_{S} = \frac{1}{2}$
Consider the sodium vapor lamps described in the previous question. How much energy is emitted by 45.8 mg of sodium atoms emitting light at this wavelength? Assume each	$n = 4, \ \ell = 2, \ m_{\ell} = -1, \ m_{\rm S} = -\frac{1}{2}$
sodium atom emits one photon.	
O 2.0 x 10 ⁻³ J	$\bigcap n = 3, \ \ell = 2, \ m_{\ell} = -3, \ m_{S} = -\frac{4}{2}$
O 420 J	
O 2.0 x 10 ²¹ J	
O 4.2 x 10 ⁵ J	22 2 points An electron orbital has a round, spherical shape (s-orbital). Its n value equals 3. What is a
	possible quantum number set for this electron orbital?
	n = 2, I = 3, ml = 0, ms = 1/2
16 3 points	n = 3, l = 1, ml = 0, ms = 1/2
Which of the following statements are consistent with modern atomic theory? Multiple answers may apply.	n = 5, l = 3, ml = 0, ms = 1/2
The vast majority of mass exists in the nucleus of an atom, but the radius of the	n = 3, l = 0, ml = 0, ms = 1/2
nucleus is only about minuscule fraction of the overall atomic radius	
Electrons exist in discrete, quantifiable energy levels.	23 3 points
An electron that has zero energy when it is closest to the nucleus	The electron configuration for the Mn atom is
The solutions to the Schrödinger Equation are wavefunctions that describe the	O $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7$
energy and position of electrons in an atom.	O $1s^2 2s^2 2p^6 3s^2 3p^3$
17 4 points	$O 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$
Which of the following sets of quantum numbers is not possible?	O 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁵
O $n = 3, l = 2, m_l = 1, m_s = 1/2$	
	24 3 points
O $n = 3, l = 4, m_l = -3, m_s = 1/2$	How many total s electrons does P (atomic number 15) possess?
$n = 5, l = 3, m_l = 3, m_s = -1/2$	O 4
	O 2
	O 6
Which of the following is a possible quantum number set for an electron in a 4d arbital?	O 5
Which of the following is a possible quantum number set for an electron in a 4d orbital? $ \bigcap_{n=4, \ell=3, m_{\ell}=0, m_{s}=\frac{1}{2}} n = 4, \ell=3, m_{\ell}=0, m_{s}=\frac{1}{2} $	
$O = 4, \ell = 3, m_{\ell} = 3, m_{S} = \frac{1}{2}$	

25 3	points
W	nat is the electronic configuration of a selenium atom (Se)?
С	$[Kr]4s^24p^{14}4d^{10}4p^4$
С	[Ar]4s ² 3d ¹⁰ 4p ⁴
С	$[Kr]4s^24d^{10}4p^4$
С	[Ar]4s ² 4d ¹⁰ 4p ⁴
С	$[Kr]4s^23d^{10}4p^4$
26 3	points
	nat is the electron configuration of the chloride anion, Cl ⁻ ?
C	
_	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴
	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
С	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
	The atom is carbon. The element has atomic number 6. The atom has 2 unpaired electrons. The atom has electrons in four different, separate orbitals.
28 4	points
	ne electron configuration for the most common sodium ion is isoelectronic with
С	
С	krypton
C	
_	
_	helium