HWO2－Gases

This homework covers Chapter 1 and 2 in Chembook from sections 1．10－2．11
Some helpful videos for the challenge questions on this homework include：
－Gas Law Stoichiometry
－Reaction Stoichiometry Limiting Reagent
－Ideal Gas Law

12 points
Consider the following unbalanced reaction：
$\mathrm{AgNO}_{3}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}+\mathrm{KNO}_{3}$
What is the sum of the coefficients in the balanced reaction？ Note：If there is no coefficient，the coefficient is an understood 1.
○ 8
○ 5
○ 6
$\bigcirc 3$
$\bigcirc 4$
$\bigcirc 10$

22 points
Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ liquid decomposes into hydrogen gas and oxygen gas．Which of the following represents this reaction？
Note：phases are omitted in the answer choices，but do remember the standard state of hydrogen and oxygen gas．
－ $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$
－ $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$
－ $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}$
－ $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
－ $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}+2 \mathrm{O}$

32 points
In which state of matter are the molecules all spread out？This means the distance
between the molecules is much larger than the size of the molecules themselves．
\bigcirc gas
\bigcirc liquid
\bigcirc solid

4 points
What are the key physical properties of solids？
the molecules are very close to each othermolecules are in static positions relative to neighboring molecules molecules are in constant translational motion relative to each other molecules are very far apart from each other
molecules are very close to each other but also move considerably among themselves

52 points

Which of the following substances listed has the smallest percentage in the make up of the typical composition of air here in Austin，TX on a humid day？
$\bigcirc \operatorname{argon}(\mathrm{Ar})$
\bigcirc nitrogen $\left(\mathrm{N}_{2}\right)$
\bigcirc oxygen $\left(\mathrm{O}_{2}\right)$
○ carbon dioxide $\left(\mathrm{CO}_{2}\right)$
\bigcirc water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

62 points
Which of the following layers of the atmosphere is closest to the ground？
〇 Troposphere
O Ozone
O Stratosphere
O Mesosphere

74 points

Which of the following simple ratios of nitrogen to oxygen is the most accurate for describing the air on this planet．
（ratios are all written as nitrogen ：oxygen）
〇 4：1
○ 1：2
○ 2：1
〇 3：2
〇 3：1

84 points
Which of the following substances is most variable in our atmosphere？
〇 Water vapor
O Carbon dioxide
〇 Nitrogen
O Argon

94 points
What is the name and the approximate molar mass of $\mathrm{C}_{5} \mathrm{H}_{12}$ ？
O Heptane， $74 \mathrm{~g} / \mathrm{mol}$
O Pentane， $68 \mathrm{~g} / \mathrm{mole}$
O Hexane， $72 \mathrm{~g} / \mathrm{mol}$
－Pentane， $72 \mathrm{~g} / \mathrm{mol}$
－Pentane， $74 \mathrm{~g} / \mathrm{mol}$
O Hexane， $86 \mathrm{~g} / \mathrm{mol}$
O Pentonium， $72 \mathrm{~g} / \mathrm{mol}$

104 points
Which carbon compound contains the fewest carbon atoms？
O Methane
\bigcirc Hexane
O Propane
O Chlorobutane

112 points
According to Boyle＇s Law，pressure and volume have a（n）．．．
〇 indirect relationship
\bigcirc direct relationship
〇 inverse relationship
O none of these are correct

122 points
An inflated balloon has a volume equal to 2.3 L at $20^{\circ} \mathrm{C}$. When the temperature is reduced to $10^{\circ} \mathrm{C}$, the volume...
〇 doubles
O is halved

- decreases by a small amount
O increases by a small amount

134 points
A small quantity of neon gas is held in a 150 mL container at 1.11 atm and $27^{\circ} \mathrm{C}$. How many moles of gas are in this container?
○ $8.87 \times 10^{-6} \mathrm{~mol}$
O $7.51 \times 10^{-2} \mathrm{~mol}$
O $6.76 \times 10^{-3} \mathrm{~mol}$
○ 4.50 mol
○ $200 . \mathrm{mol}$
$14 \quad 2$ points
Catalytic converters reduce the amount of \qquad in car exhaust.
○ co
$\bigcirc \quad \mathrm{O}_{3}$
$\bigcirc \mathrm{CO}_{2}$
$\bigcirc \mathrm{N}_{2}$

154 points
The two most abundant gases in an inhaled breath are..
O Nitrogen and oxygen
Nitrogen and water vapor
Oxygen and carbon dioxide
Carbon dioxide and nitrogen

164 points
The air we exhale contains about 100 times more of which gas than the air we breathe from the atmosphere?
O Carbon dioxide
O Argon
O Oxygen
O Nitrogen

172 points
Which pollutant is present as a solid particulate in air?
○ Soot
O Ozone
Carbon monoxide
Sulfur dioxide

182 points
Which of the following pollutants cannot be detected by odor?
○ CO
$\bigcirc \mathrm{O}_{3}$
$\bigcirc \mathrm{NO}_{\mathrm{x}}$
$\bigcirc \mathrm{SO}_{x}$

194 points
Refer to the graph of elevation vs pressure founchere. What is the approximate pressure (in kPa) at 4500 m altitude?
○ 57 kPa
$\bigcirc 50 \mathrm{kPa}$
○ 60 kPa
○ 63 kPa
○ 45 kPa

204 points
The hike from Mt. Everest basecamp straight to the summit is only about 13 miles.
However, when you consider the need to gradually acclimate to intense increases in altitude, summiting Mt. Everest takes over a month and a half to complete. How does this make sense with our discussion about the atmosphere?
O As you go up in elevation, the trend in air pressure is inconsistent. The body needs to adjust to the inconsistency in air pressure.
O As you go up in elevation, the air pressure decreases. When the available oxygen decreases, the body needs time to adjust.
O As you go up in elevation, the air pressure increases. When the available oxygen increases, the body needs time to adjust.

214 points
A pitfall (or slight plot hole) of Dr. Mann's planet in the movie Interstellar was that it had an ammonia-rich atmosphere. A lethal concentration of ammonia $\left(\mathrm{NH}_{3}\right)$ is about 5,000 ppm or a mole fraction of only 0.005 . Use Dalton's Law to calculate the lethal partial pressure in atm of NH_{3} if the ambient pressure of Dr. Mann's planet is 2.52 atm .
Answer to 4 decimal places.
Type your answer..

224 points
One of the coolest science experiments ever done is the Miller-Urey experiment, where the gases of the primordial earth were combined in a closed system to see if the building blocks of life (amino acids, RNA, etc.) could have been created by natural forces several billions of years ago. These gases are $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$, and H_{2}. What is the total pressure of a gas mixture containing $0.501 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}, 0.211 \mathrm{~atm} \mathrm{CH}_{4}, 0.119 \mathrm{~atm} \mathrm{NH}_{3}$ and 0.0551 atm H_{2} ? Assume no reaction occurs.

○ 0.886 atm
0.662 atm

○ 1.000 atm
$\bigcirc 1.551 \mathrm{~atm}$
○ 1.382 atm

23
4 points
A 34 L container holds 0.80 moles of gas at 300 K . What is the pressure (in atm)?
$\bigcirc 0.58 \mathrm{~atm}$
○ 20 atm
() 440 atm

○ 1.2 atm
$24 \quad 4$ points
A gas is expanded from 3.60 L and 76.8 kPa to 8.10 L at constant temperature. What is the final pressure?
O 2240 kPa
○ 34.1 kPa
○ $\quad 173 \mathrm{kPa}$
○ 68.2 kPa
○ 9.48 kPa
○ 86.4 kPa

254 points
An industrial tube used to transport methane has an internal temperature equal to $18{ }^{\circ} \mathrm{C}$ When high quantities of methane are transported, the pressure increases to 3.6 atm in
12 L of tubing. How many moles of methane (n) are present in this 12 L tubing?
0.038 moles

〇 29 moles
3.6 moles

○ 1.8 moles

264 points
SF_{6} is a unique compound because it has a relatively high density ($6.17 \mathrm{~g} / \mathrm{L}$, to be exact) despite being a gas at room temperature. How many moles are present in a 48.0 L container filled with SF_{6} ?

〇 1.56 mol
$\bigcirc \quad 7.78 \mathrm{~mol}$
$\bigcirc 4.44 \mathrm{~mol}$
$\bigcirc \quad 2.03 \mathrm{~mol}$
0.328 mol
$\bigcirc 18.8 \mathrm{~mol}$

274 points
Consider the following unbalanced environmental reaction:

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})
$$

First balance the reaction. Then calculate the volume of NO gas produced when 0.952 moles of NO_{2} are reacted to completion with excess $\mathrm{H}_{2} \mathrm{O}$ at STP.
Reminder: STP is $0{ }^{\circ} \mathrm{C}$ and 1 atm pressure. One mole occupies 22.4 L at STP.
○ 4.80 L
○ 7.11 L
○ 43.8 L
○ 32.7 L
○ 85.7 L

284 points
Your friend is using the ideal gas law to solve a question. Your friend's work is shown below:

$$
P V=n R T
$$

$(3.7 \mathrm{~atm})(4.3 \mathrm{~L})=(0.5 \mathrm{moles})(\mathrm{R})(387.77 \mathrm{~K})$
What is the proper R value to complete the equation?
○ 0.08206 L Torr / mol K
$0.08206 \mathrm{Latm} / \mathrm{mol} \mathrm{K}$
○ $8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
O $62.36 \mathrm{LTorr} / \mathrm{mol} \mathrm{K}$
○ $62.36 \mathrm{Latm} / \mathrm{mol} \mathrm{K}$

294 points
Esther goes on a camping trip. Just before sunset, she inflates her air mattress to a total volume of 3.80 L . Overnight, the temperature drops from a pleasant $24^{\circ} \mathrm{C}$ to a colder 12
${ }^{\circ} \mathrm{C}$. What is the approximate volume of Esther's air mattress when the temperature drops to $12{ }^{\circ} \mathrm{C}$?
○ 3.96 L

- 3.65 L

○ 1.90 L
○ 7.60 L

- 3.54 L
$30 \quad 4$ points
Write and balance the chemical equation for the combustion of octane to the lowest whole number coefficients. What are the reactants and products of this reaction (including coefficients of the chemical equation when balance)?

Reactants: 2 octane, 25 oxygen Products: 16 carbon dioxide, 18 water

O Reactants: 1 octane, 1 oxygen Products: 1 carbon dioxide, 1 water
O Reactants: 2 octane, 25 carbon dioxide Products: 16 oxygen, 18 water

O Reactants: 25 octane, 2 oxygen Products: 18 carbon dioxide, 16 water

