	HW01 - Fundamentals of Chemistry This homework covers Chapter 1 in Chembook from sections 1.1 through 1.11.
	The first ten questions are fundamentals review questions from chapters 1.1-1.7. The last ten questions are from 1.8-1.11. Some helpful videos for the challenge questions on this homework include: • Composition Stoichiometry • Reaction Stoichiometry
1	 Reaction Stoichiometry Easy, Medium, Hard 2 points The concept and use of significant figures allows us to communicate an implied accuracy of a measured amount without specifically writing out a plus or minus (±) value. True False
2	2 points A technician in a laboratory records the day's barometric pressure as 747.0 Torr (mm of Hg). How many significant figures are in her recorded number? O 4 O 3 O infinite O 2
3	3 points A recipe calls for 1½ cups of sugar. Which of the following best describes that sugar in terms of matter classification? (check all that apply) pure substance homogeneous mixture heterogeneous mixture element compound solid liquid gas
4	5 points There are a dozen golf balls in a box. 24 of those boxes will fill a carton. 18 cartons are strapped together to make a palette. A golf retailer orders 5 palettes of golf balls. How many total golf balls did they just order? Type your answer
5	5 points A chunk of metal is weighed and the mass is found to be 139.5 grams. A large graduated cylinder is nearby and has 25.6 mL of water in it. The chunk of metal is put into the graduated cylinder and the water line (meniscus) is displaced up to 37.9 mL. What is the density of this metal?(answer in g/mL) Type your answer
6	Looking carefully at a sidewalk you realize that it is best described as a homogeneous mixture a pure substance a heterogeneous mixture an element a compound
7	What is the atomic mass (aka atomic weight) of potassium? (yes, DO use a periodic table for this - you will have one on the exam as well) 32.07 30.97 39.10 22.99 40.08
8	5 points The sequential counting numbers (1, 2, 3,) for the elements on the periodic table are known as which of the following? O atomic numbers atomic masses electron configurations isotopic abundance
9	2 points Mixtures can have variable compositions based on the amounts of the different substances that compose them. We communicate the amounts though the use of concentration terms. We chemists have one (and only one) concentration term that we have all agreed to use as a standard. O True O False
10	 Which of the following statements is true regarding the use of the mole in experimental chemistry? An atom is a packet of 6.022 x 10²³ moles Converting from molecules to moles is important to chemists so that they can use the "macro-scale" units of grams with the atomic masses found on the periodic table The molar mass of an atom has the units of amu, whereas the atomic mass of an atom has the units g/mol A mole is much smaller than an atom or a molecule, so it is much easier to work with in a laboratory setting
12	 50.50 g/mol 17.11 g/mol 49.46 g/mol
	How many moles are in 1.46 kilograms of sulfur (S)? 45.5 moles .0455 moles 46.72 moles 91.0 moles .0910 moles
13	5 points How many moles are in 142.5 g methanol, CH ₃ OH? 4.45 mol 4566 mol 4.58 mol 88.55 mol
14	Calculate the mass of 14.4 moles HgO. Answer in kilograms. $\begin{array}{c} \bigcirc 2.30 \times 10^{-1} \text{kg} \\ \bigcirc 1.50 \times 10^{-2} \text{kg} \\ \bigcirc 3.12 \text{kg} \\ \bigcirc 1.44 \times 10^{-2} \text{kg} \\ \bigcirc 230 \text{kg} \\ \bigcirc 15.0 \text{kg} \end{array}$
15	\bigcirc 2.89 kg 5 points How many moles are in 1.85 L H ₂ O? The density of water = 1 kg/ L \bigcirc 0.102 mol \bigcirc 103 mol \bigcirc 33.3 mol
16	5 points 4.5 moles of an unknown metal (M) weighs 109.35 g. What is the identity of the metal? Mg Na Sc Al Li
17	Balance the following reaction:
18	Consider the following balanced combustion reaction: $2H_2(g) + O_2(g) \rightarrow 2H_2O(\ell)$ How many moles of water are produced in this reaction if 8 moles of oxygen are reacted with excess hydrogen? Assume 100% reaction. $\bigcirc 16 \text{ moles}$ $\bigcirc 8 \text{ moles}$ $\bigcirc 4 \text{ moles}$ $\bigcirc 12 \text{ moles}$
19	 5 points Reactants A and B react to form C in the following balanced generic reaction: A + 2B → C In a particular experimental set-up, reactant B is found to be the limiting reagent. Which of the following must be true? ○ Reactant B will run out while there is still excess A remaining ○ Reactant A and B will run out simultaneously ○ Reactant B will always be the limiting reagent no matter how much of each reactant you begin with ○ There is at least twice the amount of reactant B than A in the beginning of the experiment
20	Consider the following reaction: $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ If 4 moles of N_2 react with 6 moles of H_2 , how many moles of N_3 are formed? 12 moles 8 moles 5.33 moles 4 moles
21	Consider the following balanced reaction: $C_2H_4(g) \ + \ 3O_2(g) \ \rightarrow \ 2CO_2(g) \ + \ 2H_2O(\ell)$ When 15 moles of O_2 are reacted to completion with 8 moles of C_2H_4 , what is the mass of carbon dioxide formed? $O \ 440 \ g$ $O \ 660 \ g$ $O \ 704 \ g$ $O \ 352 \ g$

Calculate the mass of Na₂SO₄ formed when 5.00 moles of H₂SO₄ react with 5.00 moles NaOH in the following balanced chemical equation. Answer in grams. $H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$ $\bigcirc \quad 5.00 \, \mathrm{g}$ $\bigcirc \quad 142 \, \mathrm{g}$

22

6 points

2.50 g

355 g

710 g